Model-Based Boosting
Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data. Models and algorithms are described in \doi{10.1214/07-STS242}, a hands-on tutorial is available from \doi{10.1007/s00180-012-0382-5}. The package allows user-specified loss functions and base-learners.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.