Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

MSLE

Mean squared logarithmic error


Description

Defined as: mean((log(response + 1, exp(1)) - log(truth + 1, exp(1)))^2). This is mostly used for count data, note that all predicted and actual target values must be greater or equal '-1' to compute the mean squared logarithmic error.

Usage

MSLE(truth, response)

Arguments

truth

[numeric] vector of true values

response

[numeric] vector of predicted values

Examples

n = 20
set.seed(123)
truth = abs(rnorm(n))
response = abs(rnorm(n))
MSLE(truth, response)

measures

Performance Measures for Statistical Learning

v0.3
GPL-3
Authors
Philipp Probst [aut, cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.