Meta-regression
Meta-regression for objects of class meta. This is a wrapper
function for the R function rma.uni in the R
package metafor (Viechtbauer 2010).
metareg( x, formula, method.tau = x$method.tau, hakn = x$hakn, level.comb = x$level.comb, intercept = TRUE, ... )
x |
An object of class |
formula |
Either a character string or a formula object. |
method.tau |
A character string indicating which method is
used to estimate the between-study variance tau-squared. Either
|
hakn |
A logical indicating whether the method by Hartung and Knapp should be used to adjust test statistics and confidence intervals. |
level.comb |
The level used to calculate confidence intervals for parameter estimates in the meta-regression model. |
intercept |
A logical indicating whether an intercept should be included in the meta-regression model. |
... |
Additional arguments passed to R function
|
This R function is a wrapper function for R function
rma.uni in the R package metafor
(Viechtbauer 2010).
Note, results are not back-transformed in printouts of
meta-analyses using summary measures with transformations, e.g.,
log risk ratios are printed instead of the risk ratio if argument
sm = "RR" and logit transformed proportions are printed if
argument sm = "PLOGIT".
An object of class c("metareg", "rma.uni","rma"). Please
look at the help page of R function rma.uni
for more details on the output from this function.
In addition, a list .meta is added to the output containing
the following components:
x, formula, method.tau, hakn, level.comb, intercept |
As defined above. |
dots |
Information provided in argument '...'. |
call |
Function call. |
version |
Version of R package meta used to create object. |
version.metafor |
Version of R package metafor used to create object. |
Guido Schwarzer sc@imbi.uni-freiburg.de
Viechtbauer W (2010): Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1–48
data(Fleiss1993cont)
# Add some (fictitious) grouping variables:
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "MD")
## Not run:
# Warnings due to wrong ordering of arguments (order has changed
# with version 3.0-0 of R package meta)
#
metareg(~ region, m1)
metareg(~ region, data = m1)
# Warning as no information on covariate is available
#
metareg(m1)
## End(Not run)
# Do meta-regression for covariate region
#
mu2 <- update(m1, byvar = region, tau.common = TRUE, comb.fixed = FALSE)
metareg(mu2)
# Same result for
# - tau-squared
# - test of heterogeneity
# - test for subgroup differences
# (as argument 'tau.common' was used to create mu2)
#
mu2
metareg(mu2, intercept = FALSE)
metareg(m1, region)
# Different result for
# - tau-squared
# - test of heterogeneity
# - test for subgroup differences
# (as argument 'tau.common' is - by default - FALSE)
#
mu1 <- update(m1, byvar = region)
mu1
# Generate bubble plot
#
bubble(metareg(mu2))
# Do meta-regression with two covariates
#
metareg(mu1, region + age)
# Do same meta-regressions using formula notation
#
metareg(m1, ~ region)
metareg(mu1, ~ region + age)
# Do meta-regression using REML method and print intermediate
# results for iterative estimation algorithm; furthermore print
# results with three digits.
#
metareg(mu1, region, method.tau = "REML",
control = list(verbose = TRUE), digits = 3)
# Use Hartung-Knapp method
#
mu3 <- update(mu2, hakn = TRUE)
mu3
metareg(mu3, intercept = FALSE)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.