Studies on the Effectiveness of Counseling for Smoking Cessation
Results from 24 studies on the effectiveness of various counseling types for smoking cessation.
dat.hasselblad1998
The data frame contains the following columns:
| id | numeric |
id number for each treatment arm |
| study | numeric |
study id number |
| authors | character |
study author(s) |
| year | numeric |
publication year |
| trt | character |
intervention group |
| xi | numeric |
number of individuals abstinent |
| ni | numeric |
number of individuals in group |
The dataset includes the results from 24 studies on the effectiveness of various counseling types for smoking cessation (i.e., self-help, individual counseling, group counseling, and no contact). The dataset indicates the total number of individuals within each study arm and the number that were abstinent from 6 to 12 months. The majority of the studies compared two interventions types against each other, while 2 studies compared three types against each other simultaneously.
The data can be used for a ‘network meta-analysis’ (also called ‘mixed treatment comparison meta-analysis’). The code below shows how such an analysis can be conducted using an arm-based and a contrast-based model (see Salanti et al., 2008, for more details).
Hasselblad, V. (1998). Meta-analysis of multitreatment studies. Medical Decision Making, 18, 37–43.
Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.
Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. Statistical Methods in Medical Research, 17, 279–301.
### copy data into 'dat'
dat <- dat.hasselblad1998
### calculate log odds for each study arm
dat <- escalc(measure="PLO", xi=xi, ni=ni, add=1/2, to="all", data=dat)
dat
### create network graph ('plyr' and 'igraph' packages must be installed)
## Not run:
require(plyr)
require(igraph)
pairs <- do.call(rbind, sapply(split(dat$trt, dat$study), function(x) t(combn(x,2))))
pairs <- ddply(data.frame(pairs), .(X1, X2), count)
g <- graph.edgelist(as.matrix(pairs[,1:2]), directed=FALSE)
plot(g, edge.curved=FALSE, edge.width=pairs$freq, vertex.label.dist=.7,
vertex.label=c("Individual\nCounseling", "Group\nCounseling", "No Contact", "Self-Help"))
## End(Not run)
### convert trt variable to factor with desired ordering of levels
dat$trt <- factor(dat$trt, levels=c("no_contact", "self_help", "ind_counseling", "grp_counseling"))
### add a space before each level (this makes the output a bit more legible)
levels(dat$trt) <- paste0(" ", levels(dat$trt))
### network meta-analysis using an arm-based model with fixed study effects
### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons
res <- rma.mv(yi, vi, mods = ~ factor(study) + trt - 1,
random = ~ trt | study, rho=1/2, data=dat, btt="trt")
res
### all pairwise odds ratios of interventions versus no contact
predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), diag(3)),
intercept=FALSE, transf=exp, digits=2)
### all pairwise odds ratios comparing interventions (ic vs sh, gc vs sh, and gc vs ic)
predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), rbind(c(-1,1,0), c(-1,0,1), c(0,-1,1))),
intercept=FALSE, transf=exp, digits=2)
### forest plot of ORs of interventions versus no contact
dev.new(width=7, height=4)
par(mar=c(5,4,1,2))
forest(c(0,res$beta[25:27]), sei=c(0,res$se[25:27]), psize=1, xlim=c(-3,4), digits=c(2,1), efac=2,
slab=c("No Contact", "Self-Help", "Individual Counseling", "Group Counseling"),
atransf=exp, at=log(c(.5, 1, 2, 4, 8)), xlab="Odds Ratio for Intervention vs. No Contact",
header=c("Intervention", "Odds Ratio [95% CI]"))
############################################################################
### restructure dataset to a contrast-based format
dat <- to.wide(dat.hasselblad1998, study="study", grp="trt", ref="no_contact", grpvars=6:7)
### calculate log odds ratios for each treatment comparison
dat <- escalc(measure="OR", ai=xi.1, n1i=ni.1,
ci=xi.2, n2i=ni.2, add=1/2, to="all", data=dat)
dat
### calculate the variance-covariance matrix of the log odds ratios for multitreatment studies
### see Gleser & Olkin (2009), equation (19.11), for the covariance equation
calc.v <- function(x) {
v <- matrix(1/(x$xi.2[1]+1/2) + 1/(x$ni.2[1] - x$xi.2[1] + 1/2), nrow=nrow(x), ncol=nrow(x))
diag(v) <- x$vi
v
}
V <- bldiag(lapply(split(dat, dat$study), calc.v))
### add contrast matrix to dataset
dat <- contrmat(dat, grp1="trt.1", grp2="trt.2")
dat
### network meta-analysis using a contrast-based random-effects model
### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons
res <- rma.mv(yi, V, mods = ~ self_help + ind_counseling + grp_counseling - 1,
random = ~ factor(id) | study, rho=1/2, data=dat)
res
### predicted odds ratios of interventions versus no contact
predict(res, newmods=diag(3), transf=exp, digits=2)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.