Probability of 2D spatial-temporal interaction.
Probability of 2D spatial-temporal interaction.
mkde2Dinteraction(mkde.obj, move.dat0, move.dat1, t.step, d.thresh)
mkde.obj |
An MKDE object created with |
move.dat0 |
A move data object for the first individual created
with |
move.dat1 |
A move data object for the second individual created
with |
t.step |
A time step used for numerical integration over the movement trajectory |
d.thresh |
The value of the kernel below which its contibrution to the overal density is considered negligible |
This function assumes that the two individual animals were observed at the same times. The cell values returned in the mkde.obj can be summed to obtain a global measure of spatio-temporal interaction.
Returns a list with the following elements:
mkde.obj |
An updated MKDE object containing the cell-level Bhattacharyya coefficients |
move.dat0 |
A move data object for the first individuals with updated variance parameters |
move.dat1 |
A move data object for the second individuals with updated variance parameters |
Jeff A. Tracey, PhD
USGS Western Ecological Research Center, San Diego Field Station
jatracey@usgs.gov
James Sheppard, PhD
San Diego Zoo Institute for Conservation Research
jsheppard@sandiegozoo.org
Jun Zhu, PhD
University of Wisconsin-Madison
jzhu@stat.wisc.edu
library(raster) data(panda) mv.dat0 <- initializeMovementData(panda$time, panda$x, panda$y, sig2obs=25.0, t.max=185.0) n <- nrow(panda) v <- 20.0 # increase from 0 to increase difference mv.dat1 <- initializeMovementData(panda$time, panda$x+rnorm(n, 0, v), panda$y+rnorm(n, 0, v), sig2obs=25.0, t.max=185.0) data(pandadem) cell.sz <- mean(res(pandadem)) ext <- extent(pandadem) nx <- ncol(pandadem) ny <- nrow(pandadem) mkde.obj <- initializeMKDE2D(ext@xmin, cell.sz, nx, ext@ymin, cell.sz, ny) res <- mkde2Dinteraction(mkde.obj, mv.dat0, mv.dat1, 10.0, 1e-20) mkde.obj <- res$mkde.obj mv.dat0 <- res$move.dat0 mv.dat1 <- res$move.dat1
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.