Wraps a regression learner for use in cost-sensitive learning.
Creates a wrapper, which can be used like any other learner object. Models can easily be accessed via getLearnerModel.
For each class in the task, an individual regression model is fitted for the costs of that class. During prediction, the class with the lowest predicted costs is selected.
makeCostSensRegrWrapper(learner)
learner |
(Learner | |
Other costsens:
makeCostSensClassifWrapper()
,
makeCostSensTask()
,
makeCostSensWeightedPairsWrapper()
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapperCaret()
,
makePreprocWrapper()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.