Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

performance

Measure performance of prediction.


Description

Measures the quality of a prediction w.r.t. some performance measure.

Usage

performance(
  pred,
  measures,
  task = NULL,
  model = NULL,
  feats = NULL,
  simpleaggr = FALSE
)

Arguments

pred

(Prediction)
Prediction object.

measures

(Measure | list of Measure)
Performance measure(s) to evaluate. Default is the default measure for the task, see here getDefaultMeasure.

task

(Task)
Learning task, might be requested by performance measure, usually not needed except for clustering or survival.

model

(WrappedModel)
Model built on training data, might be requested by performance measure, usually not needed except for survival.

feats

(data.frame)
Features of predicted data, usually not needed except for clustering. If the prediction was generated from a task, you can also pass this instead and the features are extracted from it.

simpleaggr

(logical)
If TRUE, aggregation of ResamplePrediction objects is skipped. This is used internally for threshold tuning. Default is FALSE.

Value

(named numeric). Performance value(s), named by measure(s).

See Also

Examples

training.set = seq(1, nrow(iris), by = 2)
test.set = seq(2, nrow(iris), by = 2)

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
mod = train(lrn, task, subset = training.set)
pred = predict(mod, newdata = iris[test.set, ])
performance(pred, measures = mmce)

# Compute multiple performance measures at once
ms = list("mmce" = mmce, "acc" = acc, "timetrain" = timetrain)
performance(pred, measures = ms, task, mod)

mlr

Machine Learning in R

v2.19.0
BSD_2_clause + file LICENSE
Authors
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Lars Kotthoff [aut], Patrick Schratz [aut, cre] (<https://orcid.org/0000-0003-0748-6624>), Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut] (<https://orcid.org/0000-0001-5324-5966>), Mason Gallo [aut], Jakob Bossek [ctb] (<https://orcid.org/0000-0002-4121-4668>), Erich Studerus [ctb] (<https://orcid.org/0000-0003-4233-0182>), Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb] (<https://orcid.org/0000-0003-2862-1418>), Florian Fendt [ctb], Philipp Probst [ctb] (<https://orcid.org/0000-0001-8402-6790>), Xudong Sun [ctb] (<https://orcid.org/0000-0003-3269-2307>), Janek Thomas [ctb] (<https://orcid.org/0000-0003-4511-6245>), Bruno Vieira [ctb], Laura Beggel [ctb] (<https://orcid.org/0000-0002-8872-8535>), Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>), Martin Binder [ctb], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb], Alexander Engelhardt [ctb], Christoph Molnar [ctb], Annette Spooner [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.