Balanced Accuracy
Computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.
First, the sample weights w are normalized per class:
w_hat[i] = w[i] / sum((t == t[i]) * w[i]).
The balanced accuracy is calculated as
1 / sum(w_hat) * sum((r == t) * w_hat).
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("bacc")
msr("bacc") Type: "classif"
Range: [0, 1]
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::bacc() from package mlr3measures.
If the measure is undefined for the input, NaN is returned.
This can be customized by setting the field na_value.
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.auc,
mlr_measures_classif.bbrier,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fnr,
mlr_measures_classif.fn,
mlr_measures_classif.fomr,
mlr_measures_classif.fpr,
mlr_measures_classif.fp,
mlr_measures_classif.logloss,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.sensitivity,
mlr_measures_classif.specificity,
mlr_measures_classif.tnr,
mlr_measures_classif.tn,
mlr_measures_classif.tpr,
mlr_measures_classif.tp
Other multiclass classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.logloss,
mlr_measures_classif.mbrier
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.