Mode of some continuous and discrete distributions
These functions return the mode of the main probability distributions implemented in R.
distrMode(x, ...) betaMode(shape1, shape2, ncp = 0) cauchyMode(location = 0, ...) chisqMode(df, ncp = 0) dagumMode(scale = 1, shape1.a, shape2.p) expMode(...) fMode(df1, df2) fiskMode(scale = 1, shape1.a) frechetMode(location = 0, scale = 1, shape = 1, ...) gammaMode(shape, rate = 1, scale = 1/rate) normMode(mean = 0, ...) gevMode(location = 0, scale = 1, shape = 0, ...) ghMode(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2) ghtMode(beta = 0.1, delta = 1, mu = 0, nu = 10) gldMode(lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8) gompertzMode(scale = 1, shape) gpdMode(location = 0, scale = 1, shape = 0) gumbelMode(location = 0, ...) hypMode(alpha = 1, beta = 0, delta = 1, mu = 0, pm = c(1, 2, 3, 4)) koenkerMode(location = 0, ...) kumarMode(shape1, shape2) laplaceMode(location = 0, ...) logisMode(location = 0, ...) lnormMode(meanlog = 0, sdlog = 1) lomaxMode(...) maxwellMode(rate) mvnormMode(mean, ...) nakaMode(scale = 1, shape) nigMode(alpha = 1, beta = 0, delta = 1, mu = 0) paralogisticMode(scale = 1, shape1.a) paretoMode(scale = 1, ...) rayleighMode(scale = 1) stableMode(alpha, beta, gamma = 1, delta = 0, pm = 0, ...) stableMode2(loc, disp, skew, tail) tMode(df, ncp) unifMode(min = 0, max = 1) weibullMode(shape, scale = 1) yulesMode(...) bernMode(prob) binomMode(size, prob) geomMode(...) hyperMode(m, n, k, ...) nbinomMode(size, prob, mu) poisMode(lambda)
x |
character. The name of the distribution to consider. |
... |
Additional parameters. |
shape1 |
non-negative parameters of the Beta distribution. |
shape2 |
non-negative parameters of the Beta distribution. |
ncp |
non-centrality parameter. |
location |
location and scale parameters. |
df |
degrees of freedom (non-negative, but can be non-integer). |
scale |
location and scale parameters. |
shape1.a |
shape parameters. |
shape2.p |
shape parameters. |
df1 |
degrees of freedom. |
df2 |
degrees of freedom. |
shape |
the location parameter a, scale parameter b, and shape parameter s. |
rate |
vector of rates. |
mean |
vector of means. |
alpha |
shape parameter |
beta |
shape parameter |
delta |
shape parameter |
mu |
shape parameter |
lambda |
shape parameter |
nu |
a numeric value, the number of degrees of freedom.
Note, |
lambda1 |
are numeric values where
|
lambda2 |
are numeric values where
|
lambda3 |
are numeric values where
|
lambda4 |
are numeric values where
|
pm |
an integer value between |
meanlog |
mean and standard deviation of the distribution
on the log scale with default values of |
sdlog |
mean and standard deviation of the distribution
on the log scale with default values of |
gamma |
value of the index parameter |
loc |
vector of (real) location parameters. |
disp |
vector of (positive) dispersion parameters. |
skew |
vector of skewness parameters (in [-1,1]). |
tail |
vector of parameters (in [1,2]) related to the tail thickness. |
min |
lower and upper limits of the distribution. Must be finite. |
max |
lower and upper limits of the distribution. Must be finite. |
prob |
Probability of success on each trial. |
size |
number of trials (zero or more). |
m |
the number of white balls in the urn. |
n |
number of observations. If |
k |
the number of balls drawn from the urn. |
A numeric value is returned, the (true) mode of the distribution.
Some functions like normMode
or cauchyMode
, which relate
to symmetric distributions, are trivial, but are implemented for the sake of
exhaustivity.
## Beta distribution curve(dbeta(x, shape1 = 2, shape2 = 3.1), xlim = c(0,1), ylab = "Beta density") M <- betaMode(shape1 = 2, shape2 = 3.1) abline(v = M, col = 2) mlv("beta", shape1 = 2, shape2 = 3.1) ## Lognormal distribution curve(stats::dlnorm(x, meanlog = 3, sdlog = 1.1), xlim = c(0, 10), ylab = "Lognormal density") M <- lnormMode(meanlog = 3, sdlog = 1.1) abline(v = M, col = 2) mlv("lnorm", meanlog = 3, sdlog = 1.1) curve(VGAM::dpareto(x, scale = 1, shape = 1), xlim = c(0, 10)) abline(v = paretoMode(scale = 1), col = 2) ## Poisson distribution poisMode(lambda = 6) poisMode(lambda = 6.1) mlv("poisson", lambda = 6.1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.