Compute model quality for a given dataset
Three summaries are immediately interpretible on the scale of the response variable:
rmse()
is the root-mean-squared-error
mae()
is the mean absolute error
qae()
is quantiles of absolute error.
Other summaries have varying scales and interpretations:
mape()
mean absolute percentage error.
rsae()
is the relative sum of absolute errors.
mse()
is the mean-squared-error.
rsquare()
is the variance of the predictions divided by the
variance of the response.
mse(model, data) rmse(model, data) mae(model, data) rsquare(model, data) qae(model, data, probs = c(0.05, 0.25, 0.5, 0.75, 0.95)) mape(model, data) rsae(model, data)
model |
A model |
data |
The dataset |
probs |
Numeric vector of probabilities |
mod <- lm(mpg ~ wt, data = mtcars) mse(mod, mtcars) rmse(mod, mtcars) rsquare(mod, mtcars) mae(mod, mtcars) qae(mod, mtcars) mape(mod, mtcars) rsae(mod, mtcars)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.