Scale forecast analysis with a Modeltime Table
Designed to perform forecasts at scale using models created with
modeltime
, parsnip
, workflows
, and regression modeling extensions
in the tidymodels
ecosystem.
modeltime_table(...) as_modeltime_table(.l)
... |
Fitted |
.l |
A list containing fitted |
modeltime_table()
:
Creates a table of models
Validates that all objects are models (parsnip or workflows objects) and all models have been fitted (trained)
Provides an ID and Description of the models
as_modeltime_table()
:
Converts a list
of models to a modeltime table. Useful if programatically creating
Modeltime Tables from models stored in a list
.
library(tidyverse) library(lubridate) library(timetk) library(parsnip) library(rsample) # Data m750 <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(m750, prop = 0.9) # --- MODELS --- # Model 1: auto_arima ---- model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits)) # ---- MODELTIME TABLE ---- # Make a Modeltime Table models_tbl <- modeltime_table( model_fit_arima ) # Can also convert a list of models list(model_fit_arima) %>% as_modeltime_table() # ---- CALIBRATE ---- calibration_tbl <- models_tbl %>% modeltime_calibrate(new_data = testing(splits)) # ---- ACCURACY ---- calibration_tbl %>% modeltime_accuracy() # ---- FORECAST ---- calibration_tbl %>% modeltime_forecast( new_data = testing(splits), actual_data = m750 )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.