Interactive Residuals Visualization
This is a wrapper for examining residuals using:
Time Plot: plot_time_series()
ACF Plot: plot_acf_diagnostics()
Seasonality Plot: plot_seasonal_diagnostics()
plot_modeltime_residuals( .data, .type = c("timeplot", "acf", "seasonality"), .smooth = FALSE, .legend_show = TRUE, .legend_max_width = 40, .title = "Residuals Plot", .x_lab = "", .y_lab = "", .color_lab = "Legend", .interactive = TRUE, ... )
.data |
A |
.type |
One of "timeplot", "acf", or "seasonality". The default is "timeplot". |
.smooth |
Logical - Whether or not to include a trendline smoother.
Uses See |
.legend_show |
Logical. Whether or not to show the legend. Can save space with long model descriptions. |
.legend_max_width |
Numeric. The width of truncation to apply to the legend text. |
.title |
Title for the plot |
.x_lab |
X-axis label for the plot |
.y_lab |
Y-axis label for the plot |
.color_lab |
Legend label if a |
.interactive |
Returns either a static ( |
... |
Additional arguments passed to:
|
A static ggplot2
plot or an interactive plotly
plot containing residuals vs time
library(tidyverse) library(lubridate) library(timetk) library(parsnip) library(rsample) # Data m750 <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(m750, prop = 0.9) # --- MODELS --- # Model 1: auto_arima ---- model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits)) # ---- MODELTIME TABLE ---- models_tbl <- modeltime_table( model_fit_arima ) # ---- RESIDUALS ---- residuals_tbl <- models_tbl %>% modeltime_calibrate(new_data = testing(splits)) %>% modeltime_residuals() residuals_tbl %>% plot_modeltime_residuals( .type = "timeplot", .interactive = FALSE )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.