Compute confidence intervals from (multiple) simulated data sets
This function automates the calculation of coverage rates for exploring the robustness of confidence interval methods.
CIsim( n, samples = 100, rdist = rnorm, args = list(), plot = if (samples <= 200) "draw" else "none", estimand = 0, conf.level = 0.95, method = t.test, method.args = list(), interval = function(x) { do.call(method, c(list(x, conf.level = conf.level), method.args))$conf.int }, estimate = function(x) { do.call(method, c(list(x, conf.level = conf.level), method.args))$estimate }, verbose = TRUE )
n |
size of each sample |
samples |
number of samples to simulate |
rdist |
function used to draw random samples |
args |
arguments required by |
plot |
one of |
estimand |
true value of the parameter being estimated |
conf.level |
confidence level for intervals |
method |
function used to compute intervals. Standard functions that
produce an object of class |
method.args |
arguments required by |
interval |
a function that computes a confidence interval from data. Function should return a vector of length 2. |
estimate |
a function that computes an estimate from data |
verbose |
print summary to screen? |
A data frame with variables
lower
,
upper
,
estimate
,
cover
('Yes' or 'No'),
and
sample
is returned invisibly. See the examples for a way to use this to display the intervals
graphically.
# 1000 95% intervals using t.test; population is N(0,1) CIsim(n=10, samples=1000) # this time population is Exp(1); fewer samples, so we get a plot CIsim(n=10, samples=100, rdist=rexp, estimand=1) # Binomial treats 1 like success, 0 like failure CIsim(n=30, samples=100, rdist=rbinom, args=list(size=1, prob=.7), estimand = .7, method = binom.test, method.args=list(ci = "Plus4"))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.