Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

shadow_shift

Shift missing values to facilitate missing data exploration/visualisation


Description

shadow_shift transforms missing values to facilitate visualisation, and has different behaviour for different types of variables. For numeric variables, the values are shifted to 10% below the minimum value for a given variable plus some jittered noise, to separate repeated values, so that missing values can be visualised along with the rest of the data.

Usage

shadow_shift(x, ...)

Arguments

x

a variable of interest to shift

...

extra arguments to pass

See Also

Examples

airquality$Ozone
shadow_shift(airquality$Ozone)
## Not run: 
library(dplyr)
airquality %>%
    mutate(Ozone_shift = shadow_shift(Ozone))

## End(Not run)

naniar

Data Structures, Summaries, and Visualisations for Missing Data

v0.6.0
MIT + file LICENSE
Authors
Nicholas Tierney [aut, cre] (<https://orcid.org/0000-0003-1460-8722>), Di Cook [aut] (<https://orcid.org/0000-0002-3813-7155>), Miles McBain [aut] (<https://orcid.org/0000-0003-2865-2548>), Colin Fay [aut] (<https://orcid.org/0000-0001-7343-1846>), Mitchell O'Hara-Wild [ctb], Jim Hester [ctb], Luke Smith [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.