Random draws from the posterior distribution with Normal-Inverse-Wishart (NIW) prior.
Given iid d-dimensional niche indicators X = (X_1,…,X_N) with X_i \sim N(μ, Σ), this function generates random draws from p(μ,Σ | X) for the Normal-Inverse-Wishart (NIW) prior.
niw.post(nsamples, X, lambda, kappa, Psi, nu)
nsamples |
the number of posterior draws. |
X |
a data matrix with observations along the rows. |
lambda |
location parameter. See Details. |
kappa |
scale parameter. Defaults to |
Psi |
scale matrix. Defaults to |
nu |
degrees of freedom. Defaults to |
The NIW distribution p(μ, Σ | λ, κ, Ψ, ν) is defined as
Σ \sim W^{-1}(Ψ, ν), \quad μ | Σ \sim N(λ, Σ/κ).
The default value kappa = 0 uses the Lebesque prior on μ: p(μ) \propto 1.
The default value Psi = 0 uses the scale-invariant prior on Σ: p(Σ) \propto |Σ|^{-(ν+d+1)/2}.
The default value nu = ncol(X)+1 for kappa = 0 and Psi = 0 makes E[μ|X]=\code{colMeans(X)} and E[Σ | X]=\code{var(X)}.
Returns a list with elements mu and Sigma of sizes c(nsamples, length(lambda)) and c(dim(Psi), nsamples).
# compare the default non-informative prior to an arbitrary informative prior
# for simulated data
# simulate data
d <- 4
mu0 <- rnorm(d)
Sigma0 <- matrix(rnorm(d^2), d, d)
Sigma0 <- Sigma0 %*% t(Sigma0)
N <- 1e2
X <- rmvnorm(N, mean = mu0, sigma = Sigma0)
# informative prior parameters
lambda <- rnorm(d)
kappa <- 20
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 5
# iid draws from informative prior pi(mu, Sigma)
nsamples <- 2e3
siw0 <- rniw(nsamples, lambda, kappa, Psi, nu)
# iid draws from posterior p(mu, Sigma | X) with informative prior
siw1 <- niw.post(nsamples, X, lambda, kappa, Psi, nu)
# iid draws from posterior p(mu, Sigma | X) with default noninformative prior
siw2 <- niw.post(nsamples, X)
# compare
# prior and posterior densities of mu
clrs <- c("orange", "red", "blue", "black")
ii <- 1
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
plot.index = ii, ylab = "Density")
abline(v = mu0[ii], col = clrs[4]) # true value of mu
legend(x = "topright",
legend = c(parse(text = paste0("pi(mu[", ii, "])")),
parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Informative Prior\"")),
parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Noninformative Prior\"")),
parse(text = paste0("\"True value of \"*mu[", ii, "]"))),
fill = clrs)
# prior and posterior densities of Sigma
ii <- 1
jj <- 2
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
plot.index = c(ii,jj), ylab = "Density")
abline(v = Sigma0[ii,jj], col = clrs[4])
legend(x = "topright",
legend = c(parse(text = paste0("pi(Sigma[", ii, "*", jj, "])")),
parse(text = paste0("p(Sigma[", ii, "*", jj,
"]*\" | \"*X)*\", Informative Prior\"")),
parse(text = paste0("p(Sigma[", ii, "*", jj,
"]*\" | \"*X)*\", Noninformative Prior\"")),
parse(text = paste0("\"True value of \"*Sigma[", ii, "*", jj, "]"))),
fill = clrs)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.