Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

frwd_selection

Forward covariate selection for nlme-base non-linear mixed effect models


Description

Implements forward covariate selection for nlme-based non-linear mixed effect models

Usage

frwd_selection(base, cv, dat, cutoff = 0.05)

Arguments

base

base model

cv

a list of candidate covariate to model parameters

dat

model data

cutoff

significance level

Value

an nlme object of the final model

Examples

dat <- theo_md
dat$LOGWT <- log(dat$WT)
dat$TG <- (dat$ID < 6) + 0 # dummy covariate

specs <- list(
  fixed = list(lKA = lKA ~ 1, lCL = lCL ~ 1, lV = lV ~ 1),
  random = pdDiag(lKA + lCL ~ 1),
  start = c(0.5, -3.2, -1)
)
fit0 <- nlme_lin_cmpt(dat, par_model = specs, ncmt = 1)
cv <- list(lCL = c("WT", "TG"), lV = c("WT"))
fit <- frwd_selection(fit0, cv, dat)
print(summary(fit))

nlmixr

Nonlinear Mixed Effects Models in Population PK/PD

v2.0.4
GPL (>= 2)
Authors
Matthew Fidler [aut] (<https://orcid.org/0000-0001-8538-6691>), Yuan Xiong [aut], Rik Schoemaker [aut] (<https://orcid.org/0000-0002-7538-3005>), Justin Wilkins [aut] (<https://orcid.org/0000-0002-7099-9396>), Wenping Wang [aut, cre], Robert Leary [ctb], Mason McComb [aut] (<https://orcid.org/0000-0001-9871-8616>), Mirjam Trame [ctb], Teun Post [ctb], Richard Hooijmaijers [aut], Hadley Wickham [ctb], Dirk Eddelbuettel [cph], Johannes Pfeifer [ctb], Robert B. Schnabel [ctb], Elizabeth Eskow [ctb], Emmanuelle Comets [ctb], Audrey Lavenu [ctb], Marc Lavielle [ctb], David Ardia [cph], Daniel C. Dillon [ctb], Katharine Mullen [cph], Ben Goodrich [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.