Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nlme_lin_cmpt

Fit nlme-based linear compartment mixed-effect model using closed form solution


Description

'nlme_lin_cmpt' fits a linear one to three compartment model with either first order absorption, or i.v. bolus, or i.v. infusion. A user specifies the number of compartments, route of drug administrations, and the model parameterization. 'nlmixr' supports the clearance/volume parameterization and the micro constant parameterization, with the former as the default. Specification of fixed effects, random effects and initial values follows the standard nlme notations.

Usage

nlme_lin_cmpt(
  dat,
  parModel,
  ncmt,
  oral = TRUE,
  infusion = FALSE,
  tlag = FALSE,
  parameterization = 1,
  parTrans = .getParfn(oral, ncmt, parameterization, tlag),
  mcCores = 1,
  ...
)

nlmeLinCmpt(
  dat,
  parModel,
  ncmt,
  oral = TRUE,
  infusion = FALSE,
  tlag = FALSE,
  parameterization = 1,
  parTrans = .getParfn(oral, ncmt, parameterization, tlag),
  mcCores = 1,
  ...
)

nlmeLinCmt(
  dat,
  parModel,
  ncmt,
  oral = TRUE,
  infusion = FALSE,
  tlag = FALSE,
  parameterization = 1,
  parTrans = .getParfn(oral, ncmt, parameterization, tlag),
  mcCores = 1,
  ...
)

Arguments

dat

data to be fitted

parModel

list: model for fixed effects, randoms effects and initial values using nlme-type syntax.

ncmt

numerical: number of compartments: 1-3

oral

logical

infusion

logical

tlag

logical

parameterization

numerical: type of parameterization, 1=clearance/volume, 2=micro-constants

parTrans

function: calculation of PK parameters

mcCores

number of cores used in fitting (only for Linux)

...

additional nlme options

Value

A nlmixr nlme fit object

Author(s)

Wenping Wang

Examples

library(nlmixr)

specs <- list(fixed=lKA+lCL+lV~1, random = pdDiag(lKA+lCL~1),
              start=c(lKA=0.5, lCL=-3.2, lV=-1))
fit <- nlme_lin_cmpt(theo_md, par_model=specs, ncmt=1, verbose=TRUE)
#plot(augPred(fit,level=0:1))
summary(fit)

nlmixr

Nonlinear Mixed Effects Models in Population PK/PD

v2.0.4
GPL (>= 2)
Authors
Matthew Fidler [aut] (<https://orcid.org/0000-0001-8538-6691>), Yuan Xiong [aut], Rik Schoemaker [aut] (<https://orcid.org/0000-0002-7538-3005>), Justin Wilkins [aut] (<https://orcid.org/0000-0002-7099-9396>), Wenping Wang [aut, cre], Robert Leary [ctb], Mason McComb [aut] (<https://orcid.org/0000-0001-9871-8616>), Mirjam Trame [ctb], Teun Post [ctb], Richard Hooijmaijers [aut], Hadley Wickham [ctb], Dirk Eddelbuettel [cph], Johannes Pfeifer [ctb], Robert B. Schnabel [ctb], Elizabeth Eskow [ctb], Emmanuelle Comets [ctb], Audrey Lavenu [ctb], Marc Lavielle [ctb], David Ardia [cph], Daniel C. Dillon [ctb], Katharine Mullen [cph], Ben Goodrich [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.