Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

saem.fit

Fit an SAEM model


Description

Fit an SAEM model using either closed-form solutions or ODE-based model definitions

Usage

saem.fit(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

## S3 method for class 'fit.nlmixr.ui.nlme'
saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

## S3 method for class 'fit.function'
saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

## S3 method for class 'fit.nlmixrUI'
saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

## S3 method for class 'fit.RxODE'
saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

## S3 method for class 'fit.default'
saem(
  model,
  data,
  inits,
  PKpars = NULL,
  pred = NULL,
  covars = NULL,
  mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
  ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
  distribution = c("normal", "poisson", "binomial", "lnorm"),
  seed = 99
)

Arguments

model

an RxODE model or lincmt()

data

input data

inits

initial values

PKpars

PKpars function

pred

pred function

covars

Covariates in data

mcmc

a list of various mcmc options

ODEopt

optional ODE solving options

distribution

one of c("normal","poisson","binomial")

seed

seed for random number generator

Details

Fit a generalized nonlinear mixed-effect model using the Stochastic Approximation Expectation-Maximization (SAEM) algorithm

Value

saem fit object

Author(s)

Matthew Fidler & Wenping Wang


nlmixr

Nonlinear Mixed Effects Models in Population PK/PD

v2.0.4
GPL (>= 2)
Authors
Matthew Fidler [aut] (<https://orcid.org/0000-0001-8538-6691>), Yuan Xiong [aut], Rik Schoemaker [aut] (<https://orcid.org/0000-0002-7538-3005>), Justin Wilkins [aut] (<https://orcid.org/0000-0002-7099-9396>), Wenping Wang [aut, cre], Robert Leary [ctb], Mason McComb [aut] (<https://orcid.org/0000-0001-9871-8616>), Mirjam Trame [ctb], Teun Post [ctb], Richard Hooijmaijers [aut], Hadley Wickham [ctb], Dirk Eddelbuettel [cph], Johannes Pfeifer [ctb], Robert B. Schnabel [ctb], Elizabeth Eskow [ctb], Emmanuelle Comets [ctb], Audrey Lavenu [ctb], Marc Lavielle [ctb], David Ardia [cph], Daniel C. Dillon [ctb], Katharine Mullen [cph], Ben Goodrich [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.