Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

michaelismodels

Michaelis-Menten model and derived equations to model competitive and non-competitive inhibition


Description

Formula of Michaelis-Menten model commonly used to describe enzyme kinetics, and derived formulas taking into account the effect of a competitive or a non-competitive inhibitor

Usage

michaelis
compet_mich
non_compet_mich

Details

These models describe the evolution of the reaction rate (v) as a function of the concentration of substrate (S) and the concentration of inhibitor (I) for compet_mich and non_compet_mich.

michaelis is the classical Michaelis-Menten model (Dixon, 1979) with two parameters (Km, Vmax) :

v = S/(S+Km)*Vmax



compet_mich is the Michaelis-Menten derived model with three parameters (Km, Vmax, Ki), describing a competitive inhibition :

v = S/(S + Km*(1+I/Ki) ) * Vmax



non_compet_mich is the Michaelis-Menten derived model with three parameters (Km, Vmax, Ki), describing a non-competitive inhibition :

v = S/( (S + Km)*(1+I/Ki) ) * Vmax



Value

A formula

Author(s)

Florent Baty florent.baty@gmail.com
Marie-Laure Delignette-Muller ml.delignette@vetagro-sup.fr

References

Dixon M and Webb EC (1979) Enzymes, Academic Press, New York.

Examples

# Example 1

data(vmkm)
nls1 <- nls(michaelis,vmkm,list(Km=1,Vmax=1))
plotfit(nls1, smooth = TRUE)

# Example 2

data(vmkmki)
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))

nls2_c <- nls(compet_mich, vmkmki, list(Km=1,Vmax=20,Ki=0.5))
plotfit(nls2_c, variable=1)
overview(nls2_c)
res2_c <- nlsResiduals(nls2_c)
plot(res2_c, which=1)

nls2_nc <- nls(non_compet_mich, vmkmki, list(Km=1, Vmax=20, Ki=0.5))
plotfit(nls2_nc, variable=1)
overview(nls2_nc)
res2_nc <- nlsResiduals(nls2_nc)
plot(res2_nc, which=1)

par(def.par)

nlstools

Tools for Nonlinear Regression Analysis

v1.0-2
GPL (>= 2)
Authors
Florent Baty <florent.baty@gmail.com> and Marie-Laure Delignette-Muller <marielaure.delignettemuller@vetagro-sup.fr>, with contributions from Sandrine Charles, Jean-Pierre Flandrois, and Christian Ritz
Initial release
2015-07-31

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.