maxle_p returns expression of partitioned log-likelihood. f(y1,y2,..,yn)=f(y1)f(y2|y1)f(y3|y2y1)...f(yn|y1..y(n-1))
maxle_p
returns expression of partitioned log-likelihood.
f(y1,y2,..,yn)=f(y1)f(y2|y1)f(y3|y2y1)...f(yn|y1..y(n-1))
maxle_p(cheqs0, fixed_term = TRUE, version2 = TRUE)
cheqs0 |
Strings defining equations of errors. |
fixed_term |
if |
version2 |
another formulation of log-likelihood |
List. First element is expression of joint distribution for derivatives, second for evaluation, third latex, fourth marginal distributions for each variable.
# joint normal distribution eq_c <- c("Tw ~ ((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) -(1 + (PH))) + sqrt((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 * (1 + (PH) + (tw)) *(-(PH) * (ta - Tc + 2) + (1 - (tw) * (ta - Tc + 2)) * (2/w -Ec/w))))/(2 * (1 + (PH) + (tw)))", "Tf1 ~ (th1) * (ta - (((((PH) + (tw)) * (ta - Tc + 2) + (1 + (tw)) *(Ec/w - 2/w) - (1 + (PH))) + sqrt((((PH) + (tw)) * (ta -Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 - 4 *(1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) + (tw)))) -Tc + 2) - 1", "Ef1 ~ (ph1)/(PH) * (w * (((((PH) + (tw)) * (ta - Tc + 2) + (1 +(tw)) * (Ec/w - 2/w) - (1 + (PH))) + sqrt((((PH) + (tw)) *(ta - Tc + 2) + (1 + (tw)) * (Ec/w - 2/w) - (1 + (PH)))^2 -4 * (1 + (PH) + (tw)) * (-(PH) * (ta - Tc + 2) + (1 - (tw) *(ta - Tc + 2)) * (2/w - Ec/w))))/(2 * (1 + (PH) + (tw)))) -Ec + 2) - 1") parl <- c("tw","PH","th1","ph1") para_cont <- get_par(parl, eq_c) cheqs0 <- para_cont$cheqs0 res <- maxle_p(cheqs0=cheqs0)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.