Stepwise forward regression
Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.
ols_step_forward_p(model, ...) ## Default S3 method: ols_step_forward_p(model, penter = 0.3, progress = FALSE, details = FALSE, ...) ## S3 method for class 'ols_step_forward_p' plot(x, model = NA, print_plot = TRUE, ...)
model |
An object of class |
... |
Other arguments. |
penter |
p value; variables with p value less than |
progress |
Logical; if |
details |
Logical; if |
x |
An object of class |
print_plot |
logical; if |
ols_step_forward_p
returns an object of class "ols_step_forward_p"
.
An object of class "ols_step_forward_p"
is a list containing the
following components:
model |
final model; an object of class |
steps |
number of steps |
predictors |
variables added to the model |
rsquare |
coefficient of determination |
aic |
akaike information criteria |
sbc |
bayesian information criteria |
sbic |
sawa's bayesian information criteria |
adjr |
adjusted r-square |
rmse |
root mean square error |
mallows_cp |
mallow's Cp |
indvar |
predictors |
ols_step_forward()
has been deprecated. Instead use ols_step_forward_p()
.
Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.
Other variable selection procedures: ols_step_all_possible
,
ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_best_subset
,
ols_step_both_aic
,
ols_step_forward_aic
# stepwise forward regression model <- lm(y ~ ., data = surgical) ols_step_forward_p(model) # stepwise forward regression plot model <- lm(y ~ ., data = surgical) k <- ols_step_forward_p(model) plot(k) # final model k$model
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.