Parameters from ANOVAs
Parameters from ANOVAs
## S3 method for class 'aov' model_parameters( model, omega_squared = NULL, eta_squared = NULL, epsilon_squared = NULL, df_error = NULL, type = NULL, ci = NULL, test = NULL, power = FALSE, verbose = TRUE, ... )
model |
Object of class |
omega_squared |
Compute omega squared as index of effect size. Can be
|
eta_squared |
Compute eta squared as index of effect size. Can be
|
epsilon_squared |
Compute epsilon squared as index of effect size. Can
be |
df_error |
Denominator degrees of freedom (or degrees of freedom of the
error estimate, i.e., the residuals). This is used to compute effect sizes
for ANOVA-tables from mixed models. See 'Examples'. (Ignored for
|
type |
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3,
ANOVA-tables using |
ci |
Confidence Interval (CI) level for effect sizes
|
test |
String, indicating the type of test for |
power |
Logical, if |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. |
A data frame of indices related to the model's parameters.
For ANOVA-tables from mixed models (i.e. anova(lmer())), only
partial or adjusted effect sizes can be computed.
if (requireNamespace("effectsize", quietly = TRUE)) {
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(
model,
omega_squared = "partial",
eta_squared = "partial",
epsilon_squared = "partial"
)
model_parameters(
model,
omega_squared = "partial",
eta_squared = "partial",
ci = .9
)
model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(
model,
omega_squared = "partial",
eta_squared = "partial",
epsilon_squared = "partial"
)
model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)
## Not run:
if (require("lme4")) {
mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species),
data = df
)
model <- anova(mm)
# simple parameters table
model_parameters(model)
# parameters table including effect sizes
model_parameters(
model,
eta_squared = "partial",
ci = .9,
df_error = dof_satterthwaite(mm)[2:3]
)
}
## End(Not run)
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.