Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

comprehendmedical_detect_entities_v2

Inspects the clinical text for a variety of medical entities and returns specific information about them such as entity category, location, and confidence score on that information


Description

Inspects the clinical text for a variety of medical entities and returns specific information about them such as entity category, location, and confidence score on that information. Amazon Comprehend Medical only detects medical entities in English language texts.

The detect_entities_v2 operation replaces the detect_entities operation. This new action uses a different model for determining the entities in your medical text and changes the way that some entities are returned in the output. You should use the detect_entities_v2 operation in all new applications.

The detect_entities_v2 operation returns the Acuity and Direction entities as attributes instead of types.

Usage

comprehendmedical_detect_entities_v2(Text)

Arguments

Text

[required] A UTF-8 string containing the clinical content being examined for entities. Each string must contain fewer than 20,000 bytes of characters.

Value

A list with the following syntax:

list(
  Entities = list(
    list(
      Id = 123,
      BeginOffset = 123,
      EndOffset = 123,
      Score = 123.0,
      Text = "string",
      Category = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION",
      Type = "NAME"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"GENERIC_NAME"|"BRAND_NAME"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_NAME"|"TEST_VALUE"|"TEST_UNITS"|"PROCEDURE_NAME"|"TREATMENT_NAME"|"DATE"|"AGE"|"CONTACT_POINT"|"EMAIL"|"IDENTIFIER"|"URL"|"ADDRESS"|"PROFESSION"|"SYSTEM_ORGAN_SITE"|"DIRECTION"|"QUALITY"|"QUANTITY"|"TIME_EXPRESSION"|"TIME_TO_MEDICATION_NAME"|"TIME_TO_DX_NAME"|"TIME_TO_TEST_NAME"|"TIME_TO_PROCEDURE_NAME"|"TIME_TO_TREATMENT_NAME",
      Traits = list(
        list(
          Name = "SIGN"|"SYMPTOM"|"DIAGNOSIS"|"NEGATION",
          Score = 123.0
        )
      ),
      Attributes = list(
        list(
          Type = "NAME"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"GENERIC_NAME"|"BRAND_NAME"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_NAME"|"TEST_VALUE"|"TEST_UNITS"|"PROCEDURE_NAME"|"TREATMENT_NAME"|"DATE"|"AGE"|"CONTACT_POINT"|"EMAIL"|"IDENTIFIER"|"URL"|"ADDRESS"|"PROFESSION"|"SYSTEM_ORGAN_SITE"|"DIRECTION"|"QUALITY"|"QUANTITY"|"TIME_EXPRESSION"|"TIME_TO_MEDICATION_NAME"|"TIME_TO_DX_NAME"|"TIME_TO_TEST_NAME"|"TIME_TO_PROCEDURE_NAME"|"TIME_TO_TREATMENT_NAME",
          Score = 123.0,
          RelationshipScore = 123.0,
          RelationshipType = "EVERY"|"WITH_DOSAGE"|"ADMINISTERED_VIA"|"FOR"|"NEGATIVE"|"OVERLAP"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_VALUE"|"TEST_UNITS"|"DIRECTION"|"SYSTEM_ORGAN_SITE",
          Id = 123,
          BeginOffset = 123,
          EndOffset = 123,
          Text = "string",
          Category = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION",
          Traits = list(
            list(
              Name = "SIGN"|"SYMPTOM"|"DIAGNOSIS"|"NEGATION",
              Score = 123.0
            )
          )
        )
      )
    )
  ),
  UnmappedAttributes = list(
    list(
      Type = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION",
      Attribute = list(
        Type = "NAME"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"GENERIC_NAME"|"BRAND_NAME"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_NAME"|"TEST_VALUE"|"TEST_UNITS"|"PROCEDURE_NAME"|"TREATMENT_NAME"|"DATE"|"AGE"|"CONTACT_POINT"|"EMAIL"|"IDENTIFIER"|"URL"|"ADDRESS"|"PROFESSION"|"SYSTEM_ORGAN_SITE"|"DIRECTION"|"QUALITY"|"QUANTITY"|"TIME_EXPRESSION"|"TIME_TO_MEDICATION_NAME"|"TIME_TO_DX_NAME"|"TIME_TO_TEST_NAME"|"TIME_TO_PROCEDURE_NAME"|"TIME_TO_TREATMENT_NAME",
        Score = 123.0,
        RelationshipScore = 123.0,
        RelationshipType = "EVERY"|"WITH_DOSAGE"|"ADMINISTERED_VIA"|"FOR"|"NEGATIVE"|"OVERLAP"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_VALUE"|"TEST_UNITS"|"DIRECTION"|"SYSTEM_ORGAN_SITE",
        Id = 123,
        BeginOffset = 123,
        EndOffset = 123,
        Text = "string",
        Category = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION",
        Traits = list(
          list(
            Name = "SIGN"|"SYMPTOM"|"DIAGNOSIS"|"NEGATION",
            Score = 123.0
          )
        )
      )
    )
  ),
  PaginationToken = "string",
  ModelVersion = "string"
)

Request syntax

svc$detect_entities_v2(
  Text = "string"
)

paws.machine.learning

Amazon Web Services Machine Learning Services

v0.1.11
Apache License (>= 2.0)
Authors
David Kretch [aut, cre], Adam Banker [aut], Amazon.com, Inc. [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.