Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace
Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
sagemaker_create_algorithm(AlgorithmName, AlgorithmDescription, TrainingSpecification, InferenceSpecification, ValidationSpecification, CertifyForMarketplace, Tags)
AlgorithmName |
[required] The name of the algorithm. |
AlgorithmDescription |
A description of the algorithm. |
TrainingSpecification |
[required] Specifies details about training jobs run by this algorithm, including the following:
|
InferenceSpecification |
Specifies details about inference jobs that the algorithm runs, including the following:
|
ValidationSpecification |
Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code. |
CertifyForMarketplace |
Whether to certify the algorithm so that it can be listed in AWS Marketplace. |
Tags |
An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging AWS Resources. |
A list with the following syntax:
list( AlgorithmArn = "string" )
svc$create_algorithm( AlgorithmName = "string", AlgorithmDescription = "string", TrainingSpecification = list( TrainingImage = "string", TrainingImageDigest = "string", SupportedHyperParameters = list( list( Name = "string", Description = "string", Type = "Integer"|"Continuous"|"Categorical"|"FreeText", Range = list( IntegerParameterRangeSpecification = list( MinValue = "string", MaxValue = "string" ), ContinuousParameterRangeSpecification = list( MinValue = "string", MaxValue = "string" ), CategoricalParameterRangeSpecification = list( Values = list( "string" ) ) ), IsTunable = TRUE|FALSE, IsRequired = TRUE|FALSE, DefaultValue = "string" ) ), SupportedTrainingInstanceTypes = list( "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.p4d.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge" ), SupportsDistributedTraining = TRUE|FALSE, MetricDefinitions = list( list( Name = "string", Regex = "string" ) ), TrainingChannels = list( list( Name = "string", Description = "string", IsRequired = TRUE|FALSE, SupportedContentTypes = list( "string" ), SupportedCompressionTypes = list( "None"|"Gzip" ), SupportedInputModes = list( "Pipe"|"File" ) ) ), SupportedTuningJobObjectiveMetrics = list( list( Type = "Maximize"|"Minimize", MetricName = "string" ) ) ), InferenceSpecification = list( Containers = list( list( ContainerHostname = "string", Image = "string", ImageDigest = "string", ModelDataUrl = "string", ProductId = "string" ) ), SupportedTransformInstanceTypes = list( "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge" ), SupportedRealtimeInferenceInstanceTypes = list( "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge" ), SupportedContentTypes = list( "string" ), SupportedResponseMIMETypes = list( "string" ) ), ValidationSpecification = list( ValidationRole = "string", ValidationProfiles = list( list( ProfileName = "string", TrainingJobDefinition = list( TrainingInputMode = "Pipe"|"File", HyperParameters = list( "string" ), InputDataConfig = list( list( ChannelName = "string", DataSource = list( S3DataSource = list( S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile", S3Uri = "string", S3DataDistributionType = "FullyReplicated"|"ShardedByS3Key", AttributeNames = list( "string" ) ), FileSystemDataSource = list( FileSystemId = "string", FileSystemAccessMode = "rw"|"ro", FileSystemType = "EFS"|"FSxLustre", DirectoryPath = "string" ) ), ContentType = "string", CompressionType = "None"|"Gzip", RecordWrapperType = "None"|"RecordIO", InputMode = "Pipe"|"File", ShuffleConfig = list( Seed = 123 ) ) ), OutputDataConfig = list( KmsKeyId = "string", S3OutputPath = "string" ), ResourceConfig = list( InstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.p4d.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge", InstanceCount = 123, VolumeSizeInGB = 123, VolumeKmsKeyId = "string" ), StoppingCondition = list( MaxRuntimeInSeconds = 123, MaxWaitTimeInSeconds = 123 ) ), TransformJobDefinition = list( MaxConcurrentTransforms = 123, MaxPayloadInMB = 123, BatchStrategy = "MultiRecord"|"SingleRecord", Environment = list( "string" ), TransformInput = list( DataSource = list( S3DataSource = list( S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile", S3Uri = "string" ) ), ContentType = "string", CompressionType = "None"|"Gzip", SplitType = "None"|"Line"|"RecordIO"|"TFRecord" ), TransformOutput = list( S3OutputPath = "string", Accept = "string", AssembleWith = "None"|"Line", KmsKeyId = "string" ), TransformResources = list( InstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge", InstanceCount = 123, VolumeKmsKeyId = "string" ) ) ) ) ), CertifyForMarketplace = TRUE|FALSE, Tags = list( list( Key = "string", Value = "string" ) ) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.