Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

sagemaker_create_auto_ml_job

Creates an Autopilot job


Description

Creates an Autopilot job.

Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services.

For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.

Usage

sagemaker_create_auto_ml_job(AutoMLJobName, InputDataConfig,
  OutputDataConfig, ProblemType, AutoMLJobObjective, AutoMLJobConfig,
  RoleArn, GenerateCandidateDefinitionsOnly, Tags)

Arguments

AutoMLJobName

[required] Identifies an Autopilot job. Must be unique to your account and is case-insensitive.

InputDataConfig

[required] Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV. Minimum of 500 rows.

OutputDataConfig

[required] Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.

ProblemType

Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.

AutoMLJobObjective

Defines the objective of a an AutoML job. You provide a AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. If a metric is not specified, the most commonly used ObjectiveMetric for problem type is automaically selected.

AutoMLJobConfig

Contains CompletionCriteria and SecurityConfig.

RoleArn

[required] The ARN of the role that is used to access the data.

GenerateCandidateDefinitionsOnly

Generates possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.

Tags

Each tag consists of a key and an optional value. Tag keys must be unique per resource.

Value

A list with the following syntax:

list(
  AutoMLJobArn = "string"
)

Request syntax

svc$create_auto_ml_job(
  AutoMLJobName = "string",
  InputDataConfig = list(
    list(
      DataSource = list(
        S3DataSource = list(
          S3DataType = "ManifestFile"|"S3Prefix",
          S3Uri = "string"
        )
      ),
      CompressionType = "None"|"Gzip",
      TargetAttributeName = "string"
    )
  ),
  OutputDataConfig = list(
    KmsKeyId = "string",
    S3OutputPath = "string"
  ),
  ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression",
  AutoMLJobObjective = list(
    MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"
  ),
  AutoMLJobConfig = list(
    CompletionCriteria = list(
      MaxCandidates = 123,
      MaxRuntimePerTrainingJobInSeconds = 123,
      MaxAutoMLJobRuntimeInSeconds = 123
    ),
    SecurityConfig = list(
      VolumeKmsKeyId = "string",
      EnableInterContainerTrafficEncryption = TRUE|FALSE,
      VpcConfig = list(
        SecurityGroupIds = list(
          "string"
        ),
        Subnets = list(
          "string"
        )
      )
    )
  ),
  RoleArn = "string",
  GenerateCandidateDefinitionsOnly = TRUE|FALSE,
  Tags = list(
    list(
      Key = "string",
      Value = "string"
    )
  )
)

paws.machine.learning

Amazon Web Services Machine Learning Services

v0.1.11
Apache License (>= 2.0)
Authors
David Kretch [aut, cre], Adam Banker [aut], Amazon.com, Inc. [cph]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.