Creates an Autopilot job
Creates an Autopilot job.
Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services.
For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
sagemaker_create_auto_ml_job(AutoMLJobName, InputDataConfig, OutputDataConfig, ProblemType, AutoMLJobObjective, AutoMLJobConfig, RoleArn, GenerateCandidateDefinitionsOnly, Tags)
AutoMLJobName |
[required] Identifies an Autopilot job. Must be unique to your account and is case-insensitive. |
InputDataConfig |
[required] Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV. Minimum of 500 rows. |
OutputDataConfig |
[required] Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV. |
ProblemType |
Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression. |
AutoMLJobObjective |
Defines the objective of a an AutoML job. You provide a AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. If a metric is not specified, the most commonly used ObjectiveMetric for problem type is automaically selected. |
AutoMLJobConfig |
Contains CompletionCriteria and SecurityConfig. |
RoleArn |
[required] The ARN of the role that is used to access the data. |
GenerateCandidateDefinitionsOnly |
Generates possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings. |
Tags |
Each tag consists of a key and an optional value. Tag keys must be unique per resource. |
A list with the following syntax:
list( AutoMLJobArn = "string" )
svc$create_auto_ml_job( AutoMLJobName = "string", InputDataConfig = list( list( DataSource = list( S3DataSource = list( S3DataType = "ManifestFile"|"S3Prefix", S3Uri = "string" ) ), CompressionType = "None"|"Gzip", TargetAttributeName = "string" ) ), OutputDataConfig = list( KmsKeyId = "string", S3OutputPath = "string" ), ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression", AutoMLJobObjective = list( MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC" ), AutoMLJobConfig = list( CompletionCriteria = list( MaxCandidates = 123, MaxRuntimePerTrainingJobInSeconds = 123, MaxAutoMLJobRuntimeInSeconds = 123 ), SecurityConfig = list( VolumeKmsKeyId = "string", EnableInterContainerTrafficEncryption = TRUE|FALSE, VpcConfig = list( SecurityGroupIds = list( "string" ), Subnets = list( "string" ) ) ) ), RoleArn = "string", GenerateCandidateDefinitionsOnly = TRUE|FALSE, Tags = list( list( Key = "string", Value = "string" ) ) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.