Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
sagemaker_create_project(ProjectName, ProjectDescription, ServiceCatalogProvisioningDetails, Tags)
ProjectName |
[required] The name of the project. |
ProjectDescription |
A description for the project. |
ServiceCatalogProvisioningDetails |
[required] The product ID and provisioning artifact ID to provision a service catalog. For information, see What is AWS Service Catalog. |
Tags |
An array of key-value pairs that you want to use to organize and track your AWS resource costs. For more information, see Tagging AWS resources in the AWS General Reference Guide. |
A list with the following syntax:
list( ProjectArn = "string", ProjectId = "string" )
svc$create_project( ProjectName = "string", ProjectDescription = "string", ServiceCatalogProvisioningDetails = list( ProductId = "string", ProvisioningArtifactId = "string", PathId = "string", ProvisioningParameters = list( list( Key = "string", Value = "string" ) ) ), Tags = list( list( Key = "string", Value = "string" ) ) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.