Linear non-Gaussian Acyclic Models (LiNGAM)
Fits a Linear non-Gaussian Acyclic Model (LiNGAM) to the data and returns the corresponding DAG.
For details, see the reference below.
lingam(X, verbose = FALSE) ## For back-compatibility; this is *deprecated* LINGAM(X, verbose = FALSE)
X |
n x p data matrix (n: sample size, p: number of variables). |
verbose |
logical or integer indicating that increased diagnostic output is to be provided. |
lingam()
returns an R object of (S3) class "LINGAM"
,
basically a list
with components
Bpruned |
a p x p matrix B of linear coefficients, where B_{i,j} corresponds to a directed edge from j to i. |
stde |
a vector of length p with the standard deviations of the estimated residuals |
ci |
a vector of length p with the intercepts of each
equation
|
LINGAM()
— deprecated now — returns a list
with components
Adj |
a p x p 0/1 adjacency matrix A.
|
B |
p x p matrix of corresponding linear
coefficients. Note it corresponds to the transpose of
|
Of LINGAM()
and the underlying functionality,
Patrik Hoyer <patrik.hoyer@helsinki.fi>, Doris Entner
<entnerd@hotmail.com>, Antti Hyttinen <antti.hyttinen@cs.helsinki.fi>
and Jonas Peters <jonas.peters@tuebingen.mpg.de>.
S. Shimizu, P.O. Hoyer, A. Hyv\"arinen, A. Kerminen (2006) A Linear Non-Gaussian Acyclic Model for Causal Discovery; Journal of Machine Learning Research 7, 2003–2030.
fastICA
from package fastICA is used.
################################################## ## Exp 1 ################################################## set.seed(1234) n <- 500 eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n))) eps2 <- runif(n) - 0.5 x2 <- 3 + eps2 x1 <- 0.9*x2 + 7 + eps1 #truth: x1 <- x2 trueDAG <- cbind(c(0,1),c(0,0)) X <- cbind(x1,x2) res <- lingam(X) cat("true DAG:\n") show(trueDAG) cat("estimated DAG:\n") as(res, "amat") cat("\n true constants:\n") show(c(7,3)) cat("estimated constants:\n") show(res$ci) cat("\n true (sample) noise standard deviations:\n") show(c(sd(eps1), sd(eps2))) cat("estimated noise standard deviations:\n") show(res$stde) ################################################## ## Exp 2 ################################################## set.seed(123) n <- 500 eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n))) eps2 <- runif(n) - 0.5 eps3 <- sign(rnorm(n)) * abs(rnorm(n))^(1/3) eps4 <- rnorm(n)^2 x2 <- eps2 x1 <- 0.9*x2 + eps1 x3 <- 0.8*x2 + eps3 x4 <- -x1 -0.9*x3 + eps4 X <- cbind(x1,x2,x3,x4) trueDAG <- cbind(x1 = c(0,1,0,0), x2 = c(0,0,0,0), x3 = c(0,1,0,0), x4 = c(1,0,1,0)) ## x4 <- x3 <- x2 -> x1 -> x4 ## adjacency matrix: ## 0 0 0 1 ## 1 0 1 0 ## 0 0 0 1 ## 0 0 0 0 res1 <- lingam(X, verbose = TRUE)# details on LINGAM res2 <- lingam(X, verbose = 2) # details on LINGAM and fastICA ## results are the same, of course: stopifnot(identical(res1, res2)) cat("true DAG:\n") show(trueDAG) cat("estimated DAG:\n") as(res1, "amat")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.