Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

commutator

Group-theoretic commutator and group action


Description

Group-theoretic commutator, defined as [x,y]=x^(-1)y^(-1)xy

Usage

commutator(x, y)

Arguments

x,y

Permutation objects, coerced to word

Author(s)

Robin K. S. Hankin

See Also

Examples

x <- rperm(10,7)
y <- rperm(10,8)
z <- rperm(10,9)

uu <- 
commutator(commutator(x,y),z^x) *
commutator(commutator(z,x),y^z) *
commutator(commutator(y,z),x^y) 

stopifnot(all(is.id(uu)))  # this is the  Hall-Witt identity

permutations

The Symmetric Group: Permutations of a Finite Set

v1.0-9
GPL-2
Authors
Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>), Paul Egeler [ctb] (<https://orcid.org/0000-0001-6948-9498>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.