Correlated error operator
Specifies correlated errors among predictors
e1 %~~% e2
e1 |
one variable to be correlated |
e2 |
the other variable to be correlated |
For use in psem
to identify correlated sets of variables.
Jon Lefcheck <lefcheckj@si.edu>
# Generate example data dat <- data.frame(x1 = runif(50), x2 = runif(50), y1 = runif(50), y2 = runif(50)) # Create list of structural equations sem <- psem( lm(y1 ~ x1 + x2, dat), lm(y2 ~ y1 + x1, dat) ) # Look at correlated error between x1 and x2 # (exogenous) cerror(x1 %~~% x2, sem, dat) # Same as cor.test with(dat, cor.test(x1, x2)) # Look at correlatde error between x1 and y1 # (endogenous) cerror(y1 %~~% x1, sem, dat) # Not the same as cor.test # (accounts for influence of x1 and x2 on y1) with(dat, cor.test(y1, x1)) # Specify in psem sem <- update(sem, x1 %~~% y1) coefs(sem)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.