Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

SimulationManager

R6 class representing a simulation manager.


Description

R6 class to represent a manager for running multiple model simulations and saving results.

# U Island example region coordinates <- data.frame(x = rep(seq(177.01, 177.05, 0.01), 5), y = rep(seq(-18.01, -18.05, -0.01), each = 5)) template_raster <- Region$new(coordinates = coordinates)$region_raster # full extent template_raster[][-c(7, 9, 12, 14, 17:19)] <- NA # make U Island region <- Region$new(template_raster = template_raster) raster::plot(region$region_raster, main = "Example region (indices)", xlab = "Longitude (degrees)", ylab = "Latitude (degrees)", colNA = "blue") # Example population model template model_template <- PopulationModel$new(region = region, time_steps = 10, # years populations = region$region_cells, # 7 stage_matrix = 1) # Example generators for initial abundance and carrying capacity hs_matrix <- c(0.5, 0.3, 0.7, 0.9, 0.6, 0.7, 0.8) initial_gen <- Generator$new(description = "initial abundance", region = region, hs_matrix = hs_matrix, # template attached inputs = c("initial_n"), outputs = c("initial_abundance")) initial_gen$add_generative_requirements(list(initial_abundance = "function")) initial_gen$add_function_template("initial_abundance", function_def = function(params) stats::rmultinom(1, size = params$initial_n, prob = params$hs_matrix)[, 1] , call_params = c("initial_n", "hs_matrix")) capacity_gen <- Generator$new(description = "carrying capacity", region = region, hs_matrix = hs_matrix, # template attached inputs = c("density_max"), outputs = c("carrying_capacity")) capacity_gen$add_generative_requirements(list(carrying_capacity = "function")) capacity_gen$add_function_template("carrying_capacity", function_def = function(params) round(params$density_max*params$hs_matrix) , call_params = c("density_max", "hs_matrix")) # Sample input parameters sample_data <- data.frame(initial_n = c(40, 60, 80), density_max = c(15, 20, 25)) # Simulation manager sim_manager <- SimulationManager$new(sample_data = sample_data, model_template = model_template, generators = list(initial_gen, capacity_gen), parallel_cores = 2, results_dir = tempdir()) run_output <- sim_manager$run() run_output$summary dir(tempdir(), "*.RData") # includes 3 result files for (i in 1:3) print(paste("Run", i, "results:")) file_name <- paste0(sim_manager$get_results_filename(i), ".RData") print(readRDS(file.path(tempdir(), file_name))) dir(tempdir(), "*.txt") # plus simulation log

Super classes

Public fields

attached

A list of dynamically attached attributes (name-value pairs).

Active bindings

sample_data

A data frame of sampled parameters for each simulation/result.

model_template

A SimulationModel (or inherited class) object with parameters common to all simulations.

nested_model

A SimulationModel (or inherited class) object with empty sample parameters and a nested model template common to all simulations.

generators

A list of generators (Generator or inherited class) objects for generating simulation model values.

model_simulator

A ModelSimulator (or inherited class) object for running the simulations.

parallel_cores

Number of cores for running the simulations in parallel.

results_dir

Results directory path.

results_ext

Result file extension (default is .RData).

results_filename_attributes

A vector of: prefix (optional); attribute names (from the sample data frame); postfix (optional); utilized to construct results filenames.

error_messages

A vector of error messages encountered when setting model attributes.

warning_messages

A vector of warning messages encountered when setting model attributes.

Methods

Public methods


Method new()

Initialization method sets any included attributes (sample_data, model_template, generators, model_simulator, parallel_cores, results_dir, results_filename_attributes) and attaches other attributes individually listed.

Usage
SimulationManager$new(model_template = NULL, ...)
Arguments
model_template

A SimulationModel (or inherited class) object with parameters common to all simulations.

...

Parameters listed individually.


Method run()

Runs the multiple population simulations (via the set function), stores the results, and creates/writes a simulation log.

Usage
SimulationManager$run(results_dir = NULL)
Arguments
results_dir

Results directory path (must be present if not already set within manager class object).

Returns

Simulator log as a list.


Method set_model_sample()

Sets the model sample attributes via the sample data frame and the generators.

Usage
SimulationManager$set_model_sample(model, sample_index)
Arguments
model

SimulationModel (or inherited class) object (clone) to receive sample attributes.

sample_index

Index of sample from data frame.


Method log_simulation()

Summarizes the simulation log generated within the run method and writes it to a text file in the results directory.

Usage
SimulationManager$log_simulation(simulation_log)
Arguments
simulation_log

Nested list of simulation log entries generated via the run method.


Method clone()

The objects of this class are cloneable with this method.

Usage
SimulationManager$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


poems

Pattern-Oriented Ensemble Modeling System

v1.0.1
GPL-3
Authors
Sean Haythorne [aut, cre], Damien Fordham [aut], Stuart Brown [aut], Jessie Buettel [aut], Barry Brook [aut]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.