Manage and use phrases
Class, methods and functionality for processing phrases (lexical
units, lexical items, multi-word expressions) beyond the token level. The
envisaged workflow at this stage is to detect phrases using the
ngrams-method and to generate a phrases class object from the
ngrams object using the as.phrases method. This object can be
passed into a call of count, see examples. Further methods and
functions documented here are used internally, but may be useful.
## S4 method for signature 'ngrams' as.phrases(.Object, ...) ## S4 method for signature 'matrix' as.phrases(.Object, corpus, enc = encoding(corpus)) ## S4 method for signature 'phrases' as.character(x, p_attribute) concatenate_phrases(dt, phrases, col)
.Object |
Input object, either a |
... |
Arguments passed into internal call of |
corpus |
A length-one |
enc |
Encoding of the corpus. |
x |
A |
p_attribute |
The positional attribute (p-attribute) to decode. |
dt |
A |
phrases |
A |
col |
If |
The phrases considers a phrase as sequence as tokens that can
be defined by region, i.e. a left and a right corpus position. This
information is kept in a region matrix in the slot "cpos" of the
phrases class. The phrases class inherits from the
regions class (which inherits from the and the
corpus class), without adding further slots.
If .Object is an object of class ngrams, the
as.phrases-method will interpret the ngrams as CQP queries,
look up the matching corpus positions and return an phrases
object.
If .Object is a matrix, the as.phrases-method
will initialize a phrases object. The corpus and the encoding of the
corpus will be assigned to the object.
Applying the as.character-method on a phrases object
will return the decoded regions, concatenated using an underscore as
seperator.
The concatenate_phrases function takes a data.table
(argument dt) as input and concatenates phrases in successive rows
into a phrase.
Other classes to manage corpora:
corpus-class,
regions,
subcorpus
# Workflow to create document-term-matrix with phrases
obs <- corpus("GERMAPARLMINI") %>%
count(p_attribute = "word")
phrases <- corpus("GERMAPARLMINI") %>%
ngrams(n = 2L, p_attribute = "word") %>%
pmi(observed = obs) %>%
subset(ngram_count > 5L) %>%
subset(1:100) %>%
as.phrases()
dtm <- corpus("GERMAPARLMINI") %>%
as.speeches(s_attribute_name = "speaker", progress = TRUE) %>%
count(phrases = phrases, p_attribute = "word", progress = TRUE, verbose = TRUE) %>%
as.DocumentTermMatrix(col = "count", verbose = FALSE)
grep("erneuerbaren_Energien", colnames(dtm))
grep("verpasste_Chancen", colnames(dtm))
# Derive phrases object from an ngrams object
reuters_phrases <- ngrams("REUTERS", p_attribute = "word", n = 2L) %>%
pmi(observed = count("REUTERS", p_attribute = "word")) %>%
subset(ngram_count >= 5L) %>%
subset(1:25) %>%
as.phrases()
phr <- as.character(reuters_phrases, p_attribute = "word")
# Derive phrases from explicitly stated CQP queries
cqp_phrase_queries <- c(
'"oil" "revenue";',
'"Sheikh" "Aziz";',
'"Abdul" "Aziz";',
'"Saudi" "Arabia";',
'"oil" "markets";'
)
reuters_phrases <- cpos("REUTERS", cqp_phrase_queries, p_attribute = "word") %>%
as.phrases(corpus = "REUTERS", enc = "latin1")
# Use the concatenate_phrases() function on a data.table
lexical_units_cqp <- c(
'"Deutsche.*" "Bundestag.*";',
'"sozial.*" "Gerechtigkeit";',
'"Ausschuss" "f.r" "Arbeit" "und" "Soziales";',
'"soziale.*" "Marktwirtschaft";',
'"freiheitliche.*" "Grundordnung";'
)
phr <- cpos("GERMAPARLMINI", query = lexical_units_cqp, cqp = TRUE) %>%
as.phrases(corpus = "GERMAPARLMINI", enc = "word")
dt <- corpus("GERMAPARLMINI") %>%
decode(p_attribute = "word", s_attribute = character(), to = "data.table") %>%
concatenate_phrases(phrases = phr, col = "word")
dt[word == "Deutschen_Bundestag"]
dt[word == "soziale_Marktwirtschaft"]Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.