Integration of the Isotropic Gaussian Density over Circular Domains
This function calculates the integral of the bivariate, isotropic Gaussian
density (i.e., Σ = sd^2*diag(2)) over a circular domain
via the cumulative distribution function pchisq of the (non-central)
Chi-Squared distribution (Abramowitz and Stegun, 1972, Formula 26.3.24).
circleCub.Gauss(center, r, mean, sd)
| center | numeric vector of length 2 (center of the circle). | 
| r | numeric (radius of the circle). Several radii may be supplied. | 
| mean | numeric vector of length 2 (mean of the bivariate Gaussian density). | 
| sd | numeric (common standard deviation of the isotropic Gaussian density in both dimensions). | 
The integral value (one for each supplied radius).
The non-centrality parameter of the evaluated chi-squared distribution
equals the squared distance between the mean and the
center. If this becomes too large, the result becomes inaccurate, see
pchisq.
Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications.
circleCub.Gauss(center=c(1,2), r=3, mean=c(4,5), sd=6)
if (requireNamespace("mvtnorm") && gpclibPermit() && requireNamespace("spatstat.geom")) {
  ## compare with cubature over a polygonal approximation of a circle
  disc.poly <- spatstat.geom::disc(radius=3, centre=c(1,2), npoly=32)
  polyCub.exact.Gauss(disc.poly, mean=c(4,5), Sigma=6^2*diag(2))
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.