Add manually specified locked constraints
Add constraints to a conservation planning problem()
to ensure
that solutions allocate (or do not allocate) specific planning units to
specific management zones. This function offers more fine-grained control
than the add_locked_in_constraints()
and
add_locked_out_constraints()
functions.
add_manual_locked_constraints(x, data) ## S4 method for signature 'ConservationProblem,data.frame' add_manual_locked_constraints(x, data) ## S4 method for signature 'ConservationProblem,tbl_df' add_manual_locked_constraints(x, data)
x |
|
data |
|
Object (i.e. ConservationProblem
) with the constraints
added to it.
The argument to data
must contain the following fields (columns):
integer
planning unit identifier.
character
names of zones. Note that this
argument is optional for arguments to x
that contain a single
zone.
numeric
values indicating how much
of each planning unit should be allocated to each zone in the solution.
For example, the numeric
values could be binary values (i.e. zero
or one) for problems containing binary-type decision variables
(using the add_binary_decisions()
function). Alternatively,
the numeric
values could be proportions (e.g. 0.5) for problems
containing proportion-type decision variables (using the
add_proportion_decisions()
).
# set seed for reproducibility set.seed(500) # load data data(sim_pu_polygons, sim_features, sim_pu_zones_polygons, sim_features_zones) # create minimal problem p1 <- problem(sim_pu_polygons, sim_features, "cost") %>% add_min_set_objective() %>% add_relative_targets(0.2) %>% add_binary_decisions() %>% add_default_solver(verbose = FALSE) # create problem with locked in constraints using add_locked_constraints p2 <- p1 %>% add_locked_in_constraints("locked_in") # create identical problem using add_manual_locked_constraints locked_data <- data.frame(pu = which(sim_pu_polygons$locked_in), status = 1) p3 <- p1 %>% add_manual_locked_constraints(locked_data) ## Not run: # solve problems s1 <- solve(p1) s2 <- solve(p2) s3 <- solve(p3) # plot solutions par(mfrow = c(1,3), mar = c(0, 0, 4.1, 0)) plot(s1, main = "none locked in") plot(s1[s1$solution_1 == 1, ], col = "darkgreen", add = TRUE) plot(s2, main = "add_locked_in_constraints") plot(s2[s2$solution_1 == 1, ], col = "darkgreen", add = TRUE) plot(s3, main = "add_manual_constraints") plot(s3[s3$solution_1 == 1, ], col = "darkgreen", add = TRUE) ## End(Not run) # create minimal problem with multiple zones p4 <- problem(sim_pu_zones_polygons, sim_features_zones, c("cost_1", "cost_2", "cost_3")) %>% add_min_set_objective() %>% add_relative_targets(matrix(runif(15, 0.1, 0.2), nrow = 5, ncol = 3)) %>% add_binary_decisions() %>% add_default_solver(verbose = FALSE) # create data.frame with the following constraints: # planning units 1, 2, and 3 must be allocated to zone 1 in the solution # planning units 4, and 5 must be allocated to zone 2 in the solution # planning units 8 and 9 must not be allocated to zone 3 in the solution locked_data2 <- data.frame(pu = c(1, 2, 3, 4, 5, 8, 9), zone = c(rep("zone_1", 3), rep("zone_2", 2), rep("zone_3", 2)), status = c(rep(1, 5), rep(0, 2))) # print locked constraint data print(locked_data2) # create problem with added constraints p5 <- p4 %>% add_manual_locked_constraints(locked_data2) ## Not run: # solve problem s4 <- solve(p4) s5 <- solve(p5) # create two new columns representing the zone id that each planning unit # was allocated to in the two solutions s4$solution <- category_vector(s4@data[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")]) s4$solution <- factor(s4$solution) s4$solution_locked <- category_vector(s5@data[, c("solution_1_zone_1", "solution_1_zone_2", "solution_1_zone_3")]) s4$solution_locked <- factor(s4$solution_locked) # plot solutions spplot(s4, zcol = c("solution", "solution_locked"), axes = FALSE, box = FALSE) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.