Add minimum set objective
Set the objective of a conservation planning problem()
to
minimize the cost of the solution whilst ensuring that all targets are met.
This objective is similar to that used in
Marxan and is detailed in Rodrigues et al. (2000).
add_min_set_objective(x)
x |
|
A problem objective is used to specify the overall goal of the conservation planning problem. Please note that all conservation planning problems formulated in the prioritizr package require the addition of objectives—failing to do so will return an error message when attempting to solve problem.
In the context of systematic reserve design, the minimum set objective seeks to find the set of planning units that minimizes the overall cost of a reserve network, while meeting a set of representation targets for the conservation features. This objective is equivalent to a simplified Marxan reserve design problem with the Boundary Length Modifier (BLM) set to zero.
The minimum set objective for the reserve design problem can be expressed mathematically for a set of planning units (I indexed by i) and a set of features (J indexed by j) as:
Minimize sum_i^I (xi * ci) subject to sum_i^I (xi * rij) >= Tj for all j in J
Here, xi is the decisions variable (e.g. specifying whether planning unit i has been selected (1) or not (0)), ci is the cost of planning unit i, rij is the amount of feature j in planning unit i, and Tj is the target for feature j. The first term is the objective function and the second is the set of constraints. In words this says find the set of planning units that meets all the representation targets while minimizing the overall cost.
Object (i.e. ConservationProblem
) with the objective
added to it.
Rodrigues AS, Cerdeira OJ, and Gaston KJ (2000) Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography, 23: 565–574.
# set seed for reproducibility set.seed(500) # load data data(sim_pu_raster, sim_features, sim_pu_zones_stack, sim_features_zones) # create minimal problem with minimum set objective p1 <- problem(sim_pu_raster, sim_features) %>% add_min_set_objective() %>% add_relative_targets(0.1) %>% add_binary_decisions() %>% add_default_solver(verbose = FALSE) ## Not run: # solve problem s1 <- solve(p1) # plot solution plot(s1, main = "solution", axes = FALSE, box = FALSE) ## End(Not run) # create multi-zone problem with minimum set objective targets_matrix <- matrix(rpois(15, 1), nrow = 5, ncol = 3) p2 <- problem(sim_pu_zones_stack, sim_features_zones) %>% add_min_set_objective() %>% add_absolute_targets(targets_matrix) %>% add_binary_decisions() %>% add_default_solver(verbose = FALSE) ## Not run: # solve problem s2 <- solve(p2) # plot solution plot(category_layer(s2), main = "solution", axes = FALSE, box = FALSE) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.