Artificial Data with Differential Item Functioning
Artificial data simulated from a Rasch model and a partial credit model, respectively, where the items exhibit differential item functioning (DIF).
data(DIFSim) data(DIFSimPC)
Two data frames containing 200 and 500 observations, respectively, on 4 variables.
an itemresp
matrix with binary or polytomous
results for 20 or 8 items, respectively.
age in years.
factor indicating gender.
ordered factor indicating motivation level.
Komboz B, Zeileis A, Strobl C (2018). Tree-Based Global Model Tests for Polytomous Rasch Models. Educational and Psychological Measurement, 78(1), 128–166. doi: 10.1177/0013164416664394
Strobl C, Kopf J, Zeileis A (2015). Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model. Psychometrika, 80(2), 289–316. doi: 10.1007/s11336-013-9388-3
## data data("DIFSim", package = "psychotree") data("DIFSimPC", package = "psychotree") ## summary of covariates summary(DIFSim[, -1]) summary(DIFSimPC[, -1]) ## empirical frequencies of responses plot(DIFSim$resp) plot(DIFSimPC$resp) ## histogram of raw scores hist(rowSums(DIFSim$resp), breaks = 0:20 - 0.5) hist(rowSums(DIFSimPC$resp), breaks = 0:17 - 0.5)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.