Fetch significant markers after permutation analysis
Fetch significant makers after permutation analysis. These markers can be used as cofactors for model selection in a forward stepwise approach.
mqmfind.marker(cross, mqmscan = NULL, perm = NULL, alpha = 0.05, verbose=FALSE)
cross |
An object of class |
mqmscan |
|
perm |
a |
alpha |
Threshold value, everything with significance < alpha is reported |
verbose |
Display more output on verbose=TRUE |
returns a matrix with at each row a significant marker (determined from the
scanoneperm
object) and with columns: markername, chr and pos (cM)
Ritsert C Jansen; Danny Arends; Pjotr Prins; Karl W Broman broman@wisc.edu
mqmprocesspermutation
- Function called to convert results from an mqmpermutation into an scanoneperm object
The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf
MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
# Use the multitrait dataset data(multitrait) # Set cofactors at each 3th marker cof <- mqmsetcofactors(multitrait,3) # impute missing genotypes multitrait <- fill.geno(multitrait) # log transform the 7th phenotype multitrait <- transformPheno(multitrait, 7) # Bootstrap 50 runs in batches of 10 ## Not run: result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof, pheno.col=7,n.perm=50,batchsize=10) ## End(Not run) # Create a permutation object f2perm <- mqmprocesspermutation(result) # What LOD score is considered significant ? summary(f2perm) # Find markers with a significant QTL effect (First run is original phenotype data) marker <- mqmfind.marker(multitrait,result[[1]],f2perm) # Print it to the screen marker
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.