Plot the results from a genomescan using a multiple-QTL model on multiple phenotypes
Plotting routine to display the results from a multiple-QTL model on
multiple phenotypes. It supports four different visualizations: a
contourmap, heatmap, 3D graph or a multiple QTL plot created by using
plot.scanone
on the mqmmulti
object
mqmplot.multitrait(result, type=c("lines","image","contour","3Dplot"), group=NULL, meanprofile=c("none","mean","median"), theta=30, phi=15, ...)
result |
Result object from |
type |
Selection of the plot method to visualize the data: "lines" (defaut plotting option), "image", "contour" and "3Dplot" |
group |
A numeric vector indicating which traits to plot. NULL means no grouping |
meanprofile |
Plot a mean/median profile from the group selected |
theta |
Horizontal axis rotation in a 3D plot |
phi |
Vertical axis rotation in a 3D plot |
... |
Additional arguments passed to |
Danny Arends danny.arends@gmail.com
The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf
MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
data(multitrait) multitrait <- fill.geno(multitrait) # impute missing genotype data result <- mqmscanall(multitrait, logtransform=TRUE) mqmplot.multitrait(result,"lines") mqmplot.multitrait(result,"contour") mqmplot.multitrait(result,"image") mqmplot.multitrait(result,"3Dplot")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.