Generate cluster keyness statistics from a rainette result
Generate cluster keyness statistics from a rainette result
rainette_stats( groups, dtm, measure = c("chi2", "lr"), n_terms = 15, show_negative = TRUE, max_p = 0.05 )
groups |
groups membership computed by |
dtm |
the dfm object used to compute the clustering |
measure |
statistics to compute |
n_terms |
number of terms to display in keyness plots |
show_negative |
if TRUE, show negative keyness features |
max_p |
maximum keyness statistic p-value |
A list with, for each group, a data.frame of keyness statistics for the most specific n_terms features.
library(quanteda) corpus <- data_corpus_inaugural corpus <- head(corpus, n = 10) corpus <- split_segments(corpus) dtm <- dfm(corpus, remove = stopwords("en"), tolower = TRUE, remove_punct = TRUE) dtm <- dfm_trim(dtm, min_termfreq = 3) res <- rainette(dtm, k = 3) groups <- cutree_rainette(res, k = 3) rainette_stats(groups, dtm)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.