Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

nutrigenomic

Nutrigenomic Study


Description

Study the effects of five diet treatments on 21 liver lipids and 120 hepatic gene expression in wild-type and PPAR-alpha deficient mice. We use a multivariate mixed random forest analysis by regressing gene expression, diet and genotype (the x-variables) on lipid expressions (the multivariate y-responses).

References

Martin P.G. et al. (2007). Novel aspects of PPAR-alpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology, 45(3), 767–777.

Examples

## ------------------------------------------------------------
## multivariate mixed forests
## lipids used as the multivariate y
## ------------------------------------------------------------

## load the data
data(nutrigenomic, package = "randomForestSRC")

## multivariate mixed forest call
mv.obj <- rfsrc(get.mv.formula(colnames(nutrigenomic$lipids)),
            data.frame(do.call(cbind, nutrigenomic)),
            importance=TRUE, nsplit = 10)

## ------------------------------------------------------------
## plot the standarized performance and VIMP values
## ------------------------------------------------------------

## acquire the error rate for each of the 21-coordinates 
## standardize to allow for comparison across coordinates
serr <- get.mv.error(mv.obj, standardize = TRUE)

## acquire standardized VIMP 
svimp <- get.mv.vimp(mv.obj, standardize = TRUE)

par(mfrow = c(1,2))
plot(serr, xlab = "Lipids", ylab = "Standardized Performance")
matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP")


## ------------------------------------------------------------
## plot some trees
## ------------------------------------------------------------

plot(get.tree(mv.obj, 1))
plot(get.tree(mv.obj, 2))
plot(get.tree(mv.obj, 3))

randomForestSRC

Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)

v2.11.0
GPL (>= 3)
Authors
Hemant Ishwaran <hemant.ishwaran@gmail.com>, Udaya B. Kogalur <ubk@kogalur.com>
Initial release
2021-03-30

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.