Nutrigenomic Study
Study the effects of five diet treatments on 21 liver lipids and 120 hepatic gene expression in wild-type and PPAR-alpha deficient mice. We use a multivariate mixed random forest analysis by regressing gene expression, diet and genotype (the x-variables) on lipid expressions (the multivariate y-responses).
Martin P.G. et al. (2007). Novel aspects of PPAR-alpha-mediated regulation of lipid and xenobiotic metabolism revealed through a nutrigenomic study. Hepatology, 45(3), 767–777.
## ------------------------------------------------------------ ## multivariate mixed forests ## lipids used as the multivariate y ## ------------------------------------------------------------ ## load the data data(nutrigenomic, package = "randomForestSRC") ## multivariate mixed forest call mv.obj <- rfsrc(get.mv.formula(colnames(nutrigenomic$lipids)), data.frame(do.call(cbind, nutrigenomic)), importance=TRUE, nsplit = 10) ## ------------------------------------------------------------ ## plot the standarized performance and VIMP values ## ------------------------------------------------------------ ## acquire the error rate for each of the 21-coordinates ## standardize to allow for comparison across coordinates serr <- get.mv.error(mv.obj, standardize = TRUE) ## acquire standardized VIMP svimp <- get.mv.vimp(mv.obj, standardize = TRUE) par(mfrow = c(1,2)) plot(serr, xlab = "Lipids", ylab = "Standardized Performance") matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP") ## ------------------------------------------------------------ ## plot some trees ## ------------------------------------------------------------ plot(get.tree(mv.obj, 1)) plot(get.tree(mv.obj, 2)) plot(get.tree(mv.obj, 3))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.