Fast Random Forests
Fast approximate random forests using subsampling with forest options set to encourage computational speed. Applies to all families.
rfsrc.fast(formula, data, ntree = 500, nsplit = 10, bootstrap = "by.root", ensemble = "oob", sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))}, samptype = "swor", samp = NULL, ntime = 50, forest = FALSE, ...)
formula |
A symbolic description of the model to be fit. If missing, unsupervised splitting is implemented. |
data |
Data frame containing the y-outcome and x-variables. |
ntree |
Number of trees. |
nsplit |
Non-negative integer value specifying number of random split points used to split a node (deterministic splitting corresponds to the value zero and is much slower). |
bootstrap |
Bootstrap protocol used in growing a tree. |
ensemble |
Specifies the type of ensemble. We request only out-of-sample which corresponds to "oob". |
sampsize |
Function specifying size of subsampled data. Can also be a number. |
samptype |
Type of bootstrap used. |
samp |
Bootstrap specification when |
ntime |
Integer value used for survival to
constrain ensemble calculations to a grid of |
forest |
Should the forest object be returned? Turn this on if you want prediction on test data but for big data this can be large. |
... |
Further arguments to be passed to |
An object of class (rfsrc, grow)
.
Hemant Ishwaran and Udaya B. Kogalur
## ------------------------------------------------------------ ## Iowa housing regression example ## ------------------------------------------------------------ ## load the Iowa housing data data(housing, package = "randomForestSRC") ## do quick and *dirty* imputation housing <- impute(SalePrice ~ ., housing, ntree = 50, nimpute = 1, splitrule = "random") ## grow a fast forest o1 <- rfsrc.fast(SalePrice ~ ., housing) o2 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1) print(o1) print(o2) ## grow a fast bivariate forest o3 <- rfsrc.fast(cbind(SalePrice,Overall.Qual) ~ ., housing) print(o3) ## ------------------------------------------------------------ ## White wine classification example ## ------------------------------------------------------------ data(wine, package = "randomForestSRC") wine$quality <- factor(wine$quality) o <- rfsrc.fast(quality ~ ., wine) print(o) ## ------------------------------------------------------------ ## pbc survival example ## ------------------------------------------------------------ data(pbc, package = "randomForestSRC") o <- rfsrc.fast(Surv(days, status) ~ ., pbc) print(o) ## ------------------------------------------------------------ ## WIHS competing risk example ## ------------------------------------------------------------ data(wihs, package = "randomForestSRC") o <- rfsrc.fast(Surv(time, status) ~ ., wihs) print(o)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.