Construct an FLM regression term
Defines a term \int_{T}β(t)X_i(t)dt for inclusion in an mgcv::gam
-formula (or
bam
or gamm
or gamm4:::gamm
) as constructed by
pfr
, where β(t) is an unknown coefficient
function and X_i(t) is a functional predictor on the closed interval
T. See
smooth.terms
for a list of basis and penalty options; the
default is thin-plate regression splines, as this is the default option
for s
.
lf( X, argvals = NULL, xind = NULL, integration = c("simpson", "trapezoidal", "riemann"), L = NULL, presmooth = NULL, presmooth.opts = NULL, ... )
X |
functional predictors, typically expressed as an |
argvals |
indices of evaluation of |
xind |
same as argvals. It will not be supported in the next version of refund. |
integration |
method used for numerical integration. Defaults to |
L |
an optional |
presmooth |
string indicating the method to be used for preprocessing functional predictor prior
to fitting. Options are |
presmooth.opts |
list including options passed to preprocessing method
|
... |
optional arguments for basis and penalization to be passed to
|
a list with the following entries
|
a |
|
the |
|
the matrix of weights used for the integration |
|
the name used for the functional predictor variable in the |
|
the name used for |
|
the name used for the |
|
the |
|
a function that preprocesses data based on the preprocessing method specified in |
Mathew W. McLean mathew.w.mclean@gmail.com, Fabian Scheipl, and Jonathan Gellar
Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.
pfr
, af
, mgcv's smooth.terms
and linear.functional.terms
; pfr
for additional examples
data(DTI) DTI1 <- DTI[DTI$visit==1 & complete.cases(DTI),] # We can apply various preprocessing options to the DTI data fit1 <- pfr(pasat ~ lf(cca, k=30), data=DTI1) fit2 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.sc", presmooth.opts=list(nbasis=8, pve=.975)), data=DTI1) fit3 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.face", presmooth.opts=list(m=3, npc=9)), data=DTI1) fit4 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.ssvd"), data=DTI1) fit5 <- pfr(pasat ~ lf(cca, k=30, presmooth="bspline", presmooth.opts=list(nbasis=8)), data=DTI1) fit6 <- pfr(pasat ~ lf(cca, k=30, presmooth="interpolate"), data=DTI1) # All models should result in similar fits fits <- as.data.frame(lapply(1:6, function(i) get(paste0("fit",i))$fitted.values)) names(fits) <- c("none", "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate") pairs(fits)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.