Plot Average Risks
Plot average risks.
## S3 method for class 'ate' autoplot( object, type = "meanRisk", first.derivative = FALSE, estimator = object$estimator[1], ci = object$inference$ci, band = object$inference$band, plot.type = "1", plot = TRUE, smooth = FALSE, digits = 2, alpha = NA, ylab = NULL, ... )
object | 
 Object obtained with the function   | 
type | 
 [character vector] what to displayed.
Can be   | 
first.derivative | 
 [logical] If   | 
estimator | 
 [character] The type of estimator relative to which the risks should be displayed.  | 
ci | 
 [logical] If   | 
band | 
 [logical] If   | 
plot.type | 
 [character] Type of plot to be used.
  | 
plot | 
 [logical] Should the graphic be plotted.  | 
smooth | 
 [logical] Should a smooth version of the risk function be plotted instead of a simple function?  | 
digits | 
 [integer, >0] Number of decimal places.  | 
alpha | 
 [numeric, 0-1] Transparency of the confidence bands. Argument passed to   | 
ylab | 
 [character] Label for the y axis.  | 
... | 
 Additional parameters to cutomize the display.  | 
Invisible. A list containing:
plot: the ggplot object.
data: the data used to create the plot.
ate to compute average risks.
library(survival)
library(rms)
library(ggplot2)
#### simulate data ####
n <- 1e2
set.seed(10)
dtS <- sampleData(n,outcome="survival")
seqTimes <- c(0,sort(dtS$time[dtS$event==1]),max(dtS$time))
#### Cox model ####
fit <- cph(formula = Surv(time,event)~ X1+X2,data=dtS,y=TRUE,x=TRUE)
#### plot.type = 1: for few timepoints ####
ateFit <- ate(fit, data = dtS, treatment = "X1",
              times = c(1,2,5,10), se = TRUE, band = TRUE)
ggplot2::autoplot(ateFit)
ggplot2::autoplot(ateFit, band = FALSE)
ggplot2::autoplot(ateFit, type = "diffRisk")
ggplot2::autoplot(ateFit, type = "ratioRisk")
#### plot.type = 2: when looking at all jump times ####
ateFit <- ate(fit, data = dtS, treatment = "X1",
              times = seqTimes, se = TRUE, band = TRUE)
ggplot2::autoplot(ateFit, plot.type = "2")
## customize plot
outGG <- ggplot2::autoplot(ateFit, plot.type = "2", alpha = 0.25)
outGG$plot + facet_wrap(~X1, labeller = label_both)
## Looking at the difference after smoothing
## Not run: 
outGGS <- ggplot2::autoplot(ateFit, plot.type = "2", alpha = NA, smooth = TRUE)
outGGS$plot + facet_wrap(~X1, labeller = label_both)
## End(Not run)
## first derivative
## (computation of the confidence intervals takes time)
## (based on simulation - n.sim parameter)
## Not run:  
ggplot2::autoplot(ateFit, plot.type = "2", smooth = TRUE,
                  band = FALSE, type = "diffRisk")
ggplot2::autoplot(ateFit, plot.type = "2", smooth = TRUE, first.derivative = TRUE,
                  band = FALSE, type = "diffRisk")
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.