Boxplot risk quantiles
Retrospective boxplots of risk quantiles conditional on outcome
## S3 method for class 'Score' boxplot( x, model, reference, type = "risk", timepoint, overall = 1L, lwd = 3, xlim, xlab = "", main, outcome.label, outcome.label.offset = 0, event.labels, refline = (type != "risk"), add = FALSE, ... )
x |
Score object obtained by calling function |
model |
Choice of risk prediction model |
reference |
Choice of reference risk prediction model for calculation of risk differences. |
type |
Either |
timepoint |
time point specifying the prediction horizon |
overall |
Logical. Tag to be documented. |
lwd |
line width |
xlim |
x-axis limits |
xlab |
x-axis label |
main |
title of plot |
outcome.label |
Title label for column which shows the outcome status |
outcome.label.offset |
Vertical offset for outcome.label |
event.labels |
Labels for the different events (causes). |
refline |
Logical, for |
add |
Logical. Tag to be documented. |
... |
not used |
# binary outcome library(data.table) library(prodlim) db=sampleData(40,outcome="binary") fitconv=glm(Y~X3+X5,data=db,family=binomial) fitnew=glm(Y~X1+X3+X5+X6+X7,data=db,family=binomial) x=Score(list(new=fitnew,conv=fitconv), formula=Y~1,contrasts=list(c(2,1)), data=db,plots="box",null.model=FALSE) boxplot(x) # survival outcome library(survival) ds=sampleData(40,outcome="survival") fit=coxph(Surv(time,event)~X6+X9,data=ds,x=TRUE,y=TRUE) ## Not run: scoreobj=Score(list("Cox"=fit), formula=Hist(time,event)~1, data=ds, metrics=NULL, plots="box", times=c(1,5),null.model=FALSE) boxplot(scoreobj,timepoint=5) boxplot(scoreobj,timepoint=1) ## End(Not run) # competing risks outcome library(survival) data(Melanoma, package = "riskRegression") fit = CSC(Hist(time,event,cens.code="censored")~invasion+age+sex,data=Melanoma) scoreobj=Score(list("CSC"=fit), formula=Hist(time,event,cens.code="censored")~1, data=Melanoma,plots="box",times=5*365.25,null.model=FALSE) par(mar=c(4,12,4,4)) boxplot(scoreobj,timepoint=5*365.25) # more than 2 competing risks m=lava::lvm(~X1+X2+X3) lava::distribution(m, "eventtime1") <- lava::coxWeibull.lvm(scale = 1/100) lava::distribution(m, "eventtime2") <- lava::coxWeibull.lvm(scale = 1/100) lava::distribution(m, "eventtime3") <- lava::coxWeibull.lvm(scale = 1/100) lava::distribution(m, "censtime") <- lava::coxWeibull.lvm(scale = 1/100) lava::regression(m,eventtime2~X3)=1.3 m <- lava::eventTime(m, time ~ min(eventtime1 = 1, eventtime2 = 2, eventtime3 = 3, censtime = 0), "event") set.seed(101) dcr=as.data.table(lava::sim(m,101)) fit = CSC(Hist(time,event)~X1+X2+X3,data=dcr) scoreobj=Score(list("my model"=fit), formula=Hist(time,event)~1, data=dcr,plots="box",times=5,null.model=FALSE) boxplot(scoreobj)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.