Confidence Intervals and Confidence Bands for the Predicted Absolute Risk (Cumulative Incidence Function)
Confidence intervals and confidence Bands for the predicted absolute risk (cumulative incidence function).
## S3 method for class 'predictCSC' confint( object, parm = NULL, level = 0.95, n.sim = 10000, absRisk.transform = "loglog", seed = NA, ... )
object |
A |
parm |
not used. For compatibility with the generic method. |
level |
[numeric, 0-1] Level of confidence. |
n.sim |
[integer, >0] the number of simulations used to compute the quantiles for the confidence bands. |
absRisk.transform |
[character] the transformation used to improve coverage
of the confidence intervals for the predicted absolute risk in small samples.
Can be |
seed |
[integer, >0] seed number set before performing simulations for the confidence bands. If not given or NA no seed is set. |
... |
not used. |
The confidence bands and confidence intervals are automatically restricted to the interval [0;1].
Brice Ozenne
library(survival) library(prodlim) #### generate data #### set.seed(10) d <- sampleData(100) #### estimate a stratified CSC model ### fit <- CSC(Hist(time,event)~ X1 + strata(X2) + X6, data=d) #### compute individual specific risks fit.pred <- predict(fit, newdata=d[1:3], times=c(3,8), cause = 1, se = TRUE, iid = TRUE, band = TRUE) fit.pred ## check confidence intervals newse <- fit.pred$absRisk.se/(-fit.pred$absRisk*log(fit.pred$absRisk)) cbind(lower = as.double(exp(-exp(log(-log(fit.pred$absRisk)) + 1.96 * newse))), upper = as.double(exp(-exp(log(-log(fit.pred$absRisk)) - 1.96 * newse))) ) #### compute confidence intervals without transformation confint(fit.pred, absRisk.transform = "none") cbind(lower = as.double(fit.pred$absRisk - 1.96 * fit.pred$absRisk.se), upper = as.double(fit.pred$absRisk + 1.96 * fit.pred$absRisk.se) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.