Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

penalizedS3

S3-wrapper for S4 function penalized


Description

S3-wrapper for S4 function penalized

Usage

penalizedS3(formula, data, type = "elastic.net", lambda1, lambda2, fold, ...)

Arguments

formula

Communicated outcome and explanatory variables. See examples.

data

Data set in which formula is to be interpreted

type

String specifying the type of penalization. Should match one of the following values: "ridge", "lasso", "elastic.net".

lambda1

Lasso penalty

lambda2

ridge penalty

fold

passed to penalized::profL1

...

Arguments passed to penalized

Examples

library(prodlim)
## Not run: 
## too slow
if (requireNamespace("penalized",quietly=TRUE)){
library(penalized)
set.seed(8)
d <- sampleData(200,outcome="binary")
newd <- sampleData(80,outcome="binary")
fitridge <- penalizedS3(Y~X1+X2+pen(7:8), data=d, type="ridge",
                standardize=TRUE, model="logistic",trace=FALSE)
fitlasso <- penalizedS3(Y~X1+X2+pen(7:8), data=d, type="lasso",
                standardize=TRUE, model="logistic",trace=FALSE)
# fitnet <- penalizedS3(Y~X1+X2+pen(7:8), data=d, type="elastic.net",
# standardize=TRUE, model="logistic",trace=FALSE)
predictRisk(fitridge,newdata=newd)
predictRisk(fitlasso,newdata=newd)
# predictRisk(fitnet,newdata=newd)
Score(list(fitridge),data=newd,formula=Y~1)
Score(list(fitridge),data=newd,formula=Y~1,split.method="bootcv",B=2)
data(nki70) ## S4 fit
fitS4 <- penalized(Surv(time, event), penalized = nki70[,8:77],
                 unpenalized = ~ER+Age+Diam+N+Grade, data = nki70,
                 lambda1 = 1)
fitS3 <- penalizedS3(Surv(time,event)~ER+Age+Diam+pen(8:77)+N+Grade,
                     data=nki70, lambda1=1)
## or
penS3 <- penalizedS3(Surv(time,event)~ER+pen(TSPYL5,Contig63649_RC)+pen(10:77)+N+Grade,
                     data=nki70, lambda1=1)
## also this works
penS3 <- penalizedS3(Surv(time,event)~ER+Age+pen(8:33)+Diam+pen(34:77)+N+Grade,
                    data=nki70, lambda1=1)
}
## End(Not run)

riskRegression

Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks

v2020.12.08
GPL (>= 2)
Authors
Thomas Alexander Gerds [aut, cre], Paul Blanche [ctb], Rikke Mortensen [ctb], Marvin Wright [ctb], Nikolaj Tollenaar [ctb], John Muschelli [ctb], Ulla Brasch Mogensen [ctb], Brice Ozenne [aut] (<https://orcid.org/0000-0001-9694-2956>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.