Risk Regression Fits a regression model for the risk of an event – allowing for competing risks.
This is a wrapper for the function comp.risk
from the timereg package.
The main difference is one marks variables in the formula that should have a
time-dependent effect whereas in comp.risk
one marks variables that
should have a time constant (proportional) effect.
riskRegression( formula, data, times, link = "relative", cause, conf.int = TRUE, cens.model, cens.formula, max.iter = 50, conservative = TRUE, ... )
formula |
Formula where the left hand side specifies the event history event.history and the right hand side the linear predictor. See examples. |
data |
The data for fitting the model in which includes all the variables included in formula. |
times |
Vector of times. For each time point in |
link |
|
cause |
The cause of interest. |
conf.int |
If |
cens.model |
Specified the model for the (conditional) censoring distribution used for deriving weights (IFPW). Defaults to "KM" (the Kaplan-Meier method ignoring covariates) alternatively it may be "Cox" (Cox regression). |
cens.formula |
Right hand side of the formula used for fitting
the censoring model. If not specified the right hand side of
|
max.iter |
Maximal number of iterations. |
conservative |
If |
... |
Further arguments passed to |
Thomas A. Gerds tag@biostat.ku.dk, Thomas H. Scheike ts@biostat.ku.dk
Thomas A Gerds, Thomas H Scheike, and Per K Andersen. Absolute risk regression for competing risks: interpretation, link functions, and prediction. Statistics in medicine, 31(29):3921–3930, 2012.
Scheike, Zhang and Gerds (2008), Predicting cumulative incidence probability by direct binomial regression, Biometrika, 95, 205-220.
Scheike and Zhang (2007), Flexible competing risks regression modelling and goodness of fit, LIDA, 14, 464-483.
Martinussen and Scheike (2006), Dynamic regression models for survival data, Springer.
library(prodlim) data(Melanoma,package="riskRegression") ## tumor thickness on the log-scale Melanoma$logthick <- log(Melanoma$thick) # Single binary factor ## absolute risk regression library(survival) library(prodlim) fit.arr <- ARR(Hist(time,status)~sex,data=Melanoma,cause=1) print(fit.arr) # show predicted cumulative incidences plot(fit.arr,col=3:4,newdata=data.frame(sex=c("Female","Male"))) ## compare with non-parametric Aalen-Johansen estimate library(prodlim) fit.aj <- prodlim(Hist(time,status)~sex,data=Melanoma) plot(fit.aj,conf.int=FALSE) plot(fit.arr,add=TRUE,col=3:4,newdata=data.frame(sex=c("Female","Male"))) ## with time-dependent effect fit.tarr <- ARR(Hist(time,status)~strata(sex),data=Melanoma,cause=1) plot(fit.tarr,newdata=data.frame(sex=c("Female","Male"))) ## logistic risk regression fit.lrr <- LRR(Hist(time,status)~sex,data=Melanoma,cause=1) summary(fit.lrr) # Single continuous factor ## tumor thickness on the log-scale Melanoma$logthick <- log(Melanoma$thick) ## absolute risk regression fit2.arr <- ARR(Hist(time,status)~logthick,data=Melanoma,cause=1) print(fit2.arr) # show predicted cumulative incidences plot(fit2.arr,col=1:5,newdata=data.frame(logthick=quantile(Melanoma$logthick))) ## comparison with nearest neighbor non-parametric Aalen-Johansen estimate library(prodlim) fit2.aj <- prodlim(Hist(time,status)~logthick,data=Melanoma) plot(fit2.aj,conf.int=FALSE,newdata=data.frame(logthick=quantile(Melanoma$logthick))) plot(fit2.arr,add=TRUE,col=1:5,lty=3,newdata=data.frame(logthick=quantile(Melanoma$logthick))) ## logistic risk regression fit2.lrr <- LRR(Hist(time,status)~logthick,data=Melanoma,cause=1) summary(fit2.lrr) ## change model for censoring weights library(rms) fit2a.lrr <- LRR(Hist(time,status)~logthick, data=Melanoma, cause=1, cens.model="cox", cens.formula=~sex+epicel+ulcer+age+logthick) summary(fit2a.lrr) ## compare prediction performance Score(list(ARR=fit2.arr,AJ=fit2.aj,LRR=fit2.lrr),formula=Hist(time,status)~1,data=Melanoma) # multiple regression library(riskRegression) library(prodlim) # absolute risk model multi.arr <- ARR(Hist(time,status)~logthick+sex+age+ulcer,data=Melanoma,cause=1) # stratified model allowing different baseline risk for the two gender multi.arr <- ARR(Hist(time,status)~thick+strata(sex)+age+ulcer,data=Melanoma,cause=1) # stratify by a continuous variable: strata(age) multi.arr <- ARR(Hist(time,status)~tp(thick,power=0)+strata(age)+sex+ulcer, data=Melanoma, cause=1) fit.arr2a <- ARR(Hist(time,status)~tp(thick,power=1),data=Melanoma,cause=1) summary(fit.arr2a) fit.arr2b <- ARR(Hist(time,status)~timevar(thick),data=Melanoma,cause=1) summary(fit.arr2b) ## logistic risk model fit.lrr <- LRR(Hist(time,status)~thick,data=Melanoma,cause=1) summary(fit.lrr) ## nearest neighbor non-parametric Aalen-Johansen estimate library(prodlim) fit.aj <- prodlim(Hist(time,status)~thick,data=Melanoma) plot(fit.aj,conf.int=FALSE) # prediction performance x <- Score(list(fit.arr2a,fit.arr2b,fit.lrr), data=Melanoma, formula=Hist(time,status)~1, cause=1, split.method="none")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.