Meta-analysis plot (forest plot)
Plot confidence intervals with boxes indicating the sample
size/precision and optionally a diamond indicating a summary
confidence interval. This function is usually called by plot
methods for meta-analysis objects.
metaplot(mn, se, nn=NULL, labels=NULL, conf.level=0.95, xlab="Odds ratio", ylab="Study Reference",xlim=NULL, summn=NULL, sumse=NULL, sumnn=NULL, summlabel="Summary", logeffect=FALSE, lwd=2, boxsize=1, zero=as.numeric(logeffect), colors=meta.colors(), xaxt="s", logticks=TRUE, ...)
mn |
point estimates from studies |
se |
standard errors of |
nn |
precision: box ares is proportional to this. |
labels |
labels for each interval |
conf.level |
Confidence level for confidence intervals |
xlab |
label for the point estimate axis |
ylab |
label for the axis indexing the different studies |
xlim |
the range for the x axis. |
summn |
summary estimate |
sumse |
standard error of summary estimate |
sumnn |
precision of summary estimate |
summlabel |
label for summary estimate |
logeffect |
|
lwd |
line width |
boxsize |
Scale factor for box size |
zero |
"Null" effect value |
xaxt |
use |
logticks |
if |
.
colors |
see |
... |
Other graphical parameters |
This function is used for its side-effect.
forestplot
for more flexible plots
data(catheter) a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter, names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2)) metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names, summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2, logeffect=TRUE) metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names, summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2, logeffect=TRUE,logticks=FALSE) ## angry fruit salad metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names, summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2, logeffect=TRUE, colors=meta.colors(box="magenta", lines="blue", zero="red", summary="orange", text="forestgreen"))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.