Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

cv.srrr

Row-sparse reduced-rank regression tuned by cross validation


Description

Row-sparse reduced-rank regression tuned by cross validation

Usage

cv.srrr(Y, X, nrank = 1, method = c("glasso", "adglasso"), nfold = 5,
  norder = NULL, A0 = NULL, V0 = NULL, modstr = list(),
  control = list())

Arguments

Y

response matrix

X

covariate matrix

nrank

prespecified rank

method

group lasso or adaptive group lasso

nfold

fold number

norder

for constructing the folds

A0

initial value

V0

initial value

modstr

a list of model parameters controlling the model fitting

control

a list of parameters for controlling the fitting process

Details

Model parameters controlling the model fitting can be specified through argument modstr. The available elements include

  • lamA: tuning parameter sequence.

  • nlam: number of tuning parameters; no effect if lamA is specified.

  • minLambda: minimum lambda value, no effect if lamA is specified.

  • maxLambda: maxmum lambda value, no effect if lamA is specified.

  • WA: adaptive weights. If NULL, the weights are constructed from RRR.

  • wgamma: power parameter for constructing adaptive weights.

Similarly, the computational parameters controlling optimization can be specified through argument control. The available elements include

  • epsilon: epsilonergence tolerance.

  • maxit: maximum number of iterations.

  • inner.eps: used in inner loop.

  • inner.maxit: used in inner loop.

Value

A list of fitting results

References

Chen, L. and Huang, J.Z. (2012) Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. Journal of the American Statistical Association. 107:500, 1533–1545.


rrpack

Reduced-Rank Regression

v0.1-11
GPL (>= 3)
Authors
Kun Chen [aut, cre] (<https://orcid.org/0000-0003-3579-5467>), Wenjie Wang [ctb] (<https://orcid.org/0000-0003-0363-3180>), Jun Yan [ctb] (<https://orcid.org/0000-0003-4401-7296>)
Initial release
2019-11-09

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.