In-sample or out-of-sample predictive errors
This is a convenience function for computing y - yrep
(in-sample, for observed y) or y - ytilde
(out-of-sample, for new or held-out y). The method for stanreg objects
calls posterior_predict internally, whereas the method for
objects with class "ppd" accepts the matrix returned by
posterior_predict as input and can be used to avoid multiple calls to
posterior_predict.
## S3 method for class 'stanreg' predictive_error( object, newdata = NULL, draws = NULL, re.form = NULL, seed = NULL, offset = NULL, ... ) ## S3 method for class 'ppd' predictive_error(object, y, ...)
object |
Either a fitted model object returned by one of the
rstanarm modeling functions (a stanreg
object) or, for the |
newdata, draws, seed, offset, re.form |
Optional arguments passed to
|
... |
Currently ignored. |
y |
For the |
A draws by nrow(newdata) matrix. If newdata is
not specified then it will be draws by nobs(object).
The Note section in posterior_predict about
newdata for binomial models also applies for
predictive_error, with one important difference. For
posterior_predict if the left-hand side of the model formula is
cbind(successes, failures) then the particular values of
successes and failures in newdata don't matter, only
that they add to the desired number of trials. This is not the case
for predictive_error. For predictive_error the particular
value of successes matters because it is used as y when
computing the error.
posterior_predict to draw
from the posterior predictive distribution without computing predictive
errors.
if (!exists("example_model")) example(example_model)
err1 <- predictive_error(example_model, draws = 50)
hist(err1)
# Using newdata with a binomial model
formula(example_model)
nd <- data.frame(
size = c(10, 20),
incidence = c(5, 10),
period = factor(c(1,2)),
herd = c(1, 15)
)
err2 <- predictive_error(example_model, newdata = nd, draws = 10, seed = 1234)
# stanreg vs ppd methods
fit <- stan_glm(mpg ~ wt, data = mtcars, iter = 300)
preds <- posterior_predict(fit, seed = 123)
all.equal(
predictive_error(fit, seed = 123),
predictive_error(preds, y = fit$y)
)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.